File size: 1,839 Bytes
7f30fe7
 
 
 
 
b66c707
 
7f30fe7
 
 
 
 
 
 
 
 
 
 
b66c707
 
 
 
 
 
 
7f30fe7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b66c707
 
7f30fe7
 
 
 
b66c707
 
 
 
 
 
 
 
 
 
7f30fe7
 
 
b66c707
 
7f30fe7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
base_model: t5-large
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-large_readme_summarization
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-large_readme_summarization

This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7393
- Rouge1: 0.4806
- Rouge2: 0.3307
- Rougel: 0.4559
- Rougelsum: 0.4552
- Gen Len: 13.8969

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 1.968         | 1.0   | 2916  | 1.8066          | 0.4624 | 0.3113 | 0.4349 | 0.4342    | 14.0995 |
| 1.8681        | 2.0   | 5832  | 1.7578          | 0.4791 | 0.327  | 0.453  | 0.4526    | 13.8046 |
| 1.875         | 3.0   | 8748  | 1.7441          | 0.479  | 0.3291 | 0.4536 | 0.4536    | 13.8909 |
| 1.8169        | 4.0   | 11664 | 1.7393          | 0.4806 | 0.3307 | 0.4559 | 0.4552    | 13.8969 |


### Framework versions

- Transformers 4.35.1
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1