File size: 4,046 Bytes
e27602a 25ba2ee e27602a fccc04f e27602a 4bfde6f e27602a 4bfde6f e27602a fccc04f 4bfde6f 3d3b9ce f82ae44 e27602a 4bfde6f e27602a 4bfde6f e27602a fccc04f e27602a 74236c9 4bfde6f 74236c9 e27602a 74236c9 4bfde6f 74236c9 fccc04f e27602a 4bfde6f e27602a 4bfde6f e27602a 4bfde6f e27602a 4bfde6f e27602a 4bfde6f e27602a 4bfde6f e27602a 4bfde6f e27602a 4bfde6f e27602a 4bfde6f e27602a 4bfde6f fccc04f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
---
library_name: transformers
pipeline_tag: image-text-to-text
license: apache-2.0
datasets:
- joshuachou/SkinCAP
- HemanthKumarK/SKINgpt
language:
- en
tags:
- biology
- skin
- skin disease
- cancer
- medical
---
# Model Card for PaliGemma Dermatology Model
## Model Details
### Model Description
This model, based on the PaliGemma-3B architecture, has been fine-tuned for dermatology-related image and text processing tasks. The model is designed to assist in the identification of various skin conditions using a combination of image analysis and natural language processing.
- **Developed by:** Bruce_Wayne
- **Model type:** vision model
- **Finetuned from model:** https://huggingface.co/google/paligemma-3b-pt-224
- **LoRa Adaptors used:** Yes
- **Intended use:** Medical image analysis, specifically for dermatology
**
### please let me know how the model works -->https://forms.gle/cBA6apSevTyiEbp46
### Thank you
## Uses
### Direct Use
The model can be directly used for analyzing dermatology images, providing insights into potential skin conditions.
## Bias, Risks, and Limitations
**Skin Tone Bias:** The model may have been trained on a dataset that does not adequately represent all skin tones, potentially leading to biased results.
**Geographic Bias:** The model's performance may vary depending on the prevalence of certain conditions in different geographic regions.
## How to Get Started with the Model
```python
import torch
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
from PIL import Image
# Load the model and processor
model_id = "brucewayne0459/paligemma_derm"
processor = AutoProcessor.from_pretrained(model_id)
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, device_map={"": 0})
model.eval()
# Load a sample image and text input
input_text = "Identify the skin condition?"
input_image_path = " Replace with your actual image path"
input_image = Image.open(input_image_path).convert("RGB")
# Process the input
inputs = processor(text=input_text, images=input_image, return_tensors="pt", padding="longest").to("cuda" if torch.cuda.is_available() else "cpu")
# Set the maximum length for generation
max_new_tokens = 50
# Run inference
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=max_new_tokens)
# Decode the output
decoded_output = processor.decode(outputs[0], skip_special_tokens=True)
print("Model Output:", decoded_output)
```
## Training Details
### Training Data
The model was fine-tuned on a dataset of dermatological images combined with disease names
### Training Procedure
The model was fine-tuned using LoRA (Low-Rank Adaptation) for more efficient training. Mixed precision (bfloat16) was used to speed up training and reduce memory usage.
#### Training Hyperparameters
- **Training regime:** Mixed precision (bfloat16)
- **Epochs:** 10
- **Learning rate:** 2e-5
- **Batch size:** 6
- **Gradient accumulation steps:** 4
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
The model was evaluated on a separate validation set of dermatological images and Disease Names, distinct from the training data.
#### Metrics
- **Validation Loss:** The loss was tracked throughout the training process to evaluate model performance.
- **Accuracy:** The primary metric for assessing model predictions.
### Results
The model achieved a final validation loss of approximately 0.2214, indicating reasonable performance in predicting skin conditions based on the dataset used.
#### Summary
## Environmental Impact
- **Hardware Type:** 1 x L4 GPU
- **Hours used:** ~22 HOURS
- **Cloud Provider:** LIGHTNING AI
- **Compute Region:** USA
- **Carbon Emitted:** 0.9 kg eq. CO2
## Technical Specifications
### Model Architecture and Objective
- **Architecture:** Vision-Language model based on PaliGemma-3B
- **Objective:** To classify and diagnose dermatological conditions from images and text
### Compute Infrastructure
#### Hardware
- **GPU:** 1xL4 GPU
## Model Card Authors
Bruce_Wayne |