File size: 4,046 Bytes
e27602a
25ba2ee
 
e27602a
fccc04f
 
 
 
 
 
 
 
 
 
 
e27602a
4bfde6f
e27602a
 
 
 
 
4bfde6f
e27602a
 
 
 
fccc04f
4bfde6f
 
 
3d3b9ce
f82ae44
e27602a
 
 
4bfde6f
e27602a
 
 
 
4bfde6f
 
e27602a
 
 
fccc04f
e27602a
74236c9
4bfde6f
74236c9
e27602a
74236c9
4bfde6f
 
74236c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fccc04f
e27602a
 
 
 
4bfde6f
e27602a
 
 
4bfde6f
e27602a
 
 
4bfde6f
 
 
 
 
e27602a
 
 
 
 
 
 
 
4bfde6f
e27602a
 
4bfde6f
 
e27602a
 
4bfde6f
e27602a
 
 
 
 
 
 
4bfde6f
 
 
 
 
e27602a
4bfde6f
e27602a
 
 
4bfde6f
 
e27602a
 
 
 
 
4bfde6f
 
fccc04f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
---
library_name: transformers
pipeline_tag: image-text-to-text
license: apache-2.0
datasets:
- joshuachou/SkinCAP
- HemanthKumarK/SKINgpt
language:
- en
tags:
- biology
- skin
- skin disease
- cancer
- medical
---
# Model Card for PaliGemma Dermatology Model

## Model Details

### Model Description

This model, based on the PaliGemma-3B architecture, has been fine-tuned for dermatology-related image and text processing tasks. The model is designed to assist in the identification of various skin conditions using a combination of image analysis and natural language processing.


- **Developed by:** Bruce_Wayne
- **Model type:** vision model
- **Finetuned from model:** https://huggingface.co/google/paligemma-3b-pt-224
- **LoRa Adaptors used:** Yes
- **Intended use:** Medical image analysis, specifically for dermatology
**
### please let me know how the model works -->https://forms.gle/cBA6apSevTyiEbp46
### Thank you
## Uses
### Direct Use

The model can be directly used for analyzing dermatology images, providing insights into potential skin conditions.


## Bias, Risks, and Limitations

**Skin Tone Bias:** The model may have been trained on a dataset that does not adequately represent all skin tones, potentially leading to biased results.
**Geographic Bias:** The model's performance may vary depending on the prevalence of certain conditions in different geographic regions.

## How to Get Started with the Model

```python

import torch
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
from PIL import Image

# Load the model and processor
model_id = "brucewayne0459/paligemma_derm"
processor = AutoProcessor.from_pretrained(model_id)
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, device_map={"": 0})
model.eval()

# Load a sample image and text input
input_text = "Identify the skin condition?"
input_image_path = " Replace with your actual image path"  
input_image = Image.open(input_image_path).convert("RGB")

# Process the input
inputs = processor(text=input_text, images=input_image, return_tensors="pt", padding="longest").to("cuda" if torch.cuda.is_available() else "cpu")

# Set the maximum length for generation
max_new_tokens = 50

# Run inference
with torch.no_grad():
    outputs = model.generate(**inputs, max_new_tokens=max_new_tokens)

# Decode the output
decoded_output = processor.decode(outputs[0], skip_special_tokens=True)
print("Model Output:", decoded_output)
```
## Training Details

### Training Data

The model was fine-tuned on a dataset of dermatological images combined with disease names

### Training Procedure

The model was fine-tuned using LoRA (Low-Rank Adaptation) for more efficient training. Mixed precision (bfloat16) was used to speed up training and reduce memory usage.

#### Training Hyperparameters

- **Training regime:** Mixed precision (bfloat16)
- **Epochs:** 10
- **Learning rate:** 2e-5
- **Batch size:** 6
- **Gradient accumulation steps:** 4


## Evaluation

### Testing Data, Factors & Metrics

#### Testing Data

The model was evaluated on a separate validation set of dermatological images and Disease Names, distinct from the training data.

#### Metrics
- **Validation Loss:** The loss was tracked throughout the training process to evaluate model performance.
- **Accuracy:** The primary metric for assessing model predictions.
### Results

The model achieved a final validation loss of approximately 0.2214, indicating reasonable performance in predicting skin conditions based on the dataset used.

#### Summary


## Environmental Impact


- **Hardware Type:** 1 x L4 GPU
- **Hours used:** ~22 HOURS
- **Cloud Provider:** LIGHTNING AI
- **Compute Region:** USA
- **Carbon Emitted:** 0.9 kg eq. CO2

## Technical Specifications

### Model Architecture and Objective

- **Architecture:** Vision-Language model based on PaliGemma-3B
- **Objective:** To classify and diagnose dermatological conditions from images and text

### Compute Infrastructure

#### Hardware

- **GPU:** 1xL4 GPU
## Model Card Authors 
Bruce_Wayne