File size: 4,468 Bytes
29fb6a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcb5f02
29fb6a3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
base_model: euclaise/Memphis-CoT-3B
datasets:
  - euclaise/TinyCoT
  - euclaise/reddit-instruct
  - sablo/oasst2_curated
license: cc-by-sa-3.0
language:
- en
model_creator: euclaise
model_name: Memphis-CoT-3B
model_type: stablelm_epoch
inference: false
tags:
  - supertrainer2000
  - human-data
  - stablelm_epoch
pipeline_tag: text-generation
prompt_template: |
  {{system_message}}
  ### User:
  {{prompt}}
  ### Assistant:
  
quantized_by: brittlewis12
---

# Memphis-CoT-3B GGUF

![](https://cdn-uploads.huggingface.co/production/uploads/64137e2150358a805203cbac/DlTWku8gant1yx6NaxqJX.png)

Original model: [Memphis-CoT-3B](https://huggingface.co/euclaise/Memphis-CoT-3B)
Model creator: [euclaise](https://huggingface.co/euclaise)

This repo contains GGUF format model files for euclaise’s Memphis-CoT-3B.

> Memphis-CoT is a finetune of StableLM 3b 4e1t on TinyCoT, along with reddit-instruct (subset to 5000 examples, excluding posts with brackets in the title) and a curated subset of oasst2.


### What is GGUF?

GGUF is a file format for representing AI models. It is the third version of the format, introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
Converted using llama.cpp b2022 ([8f8ddfc](https://github.com/ggerganov/llama.cpp/commits/8f8ddfcfadc830b936318c3ea9fe2e8e3365aa85))

### Prompt template:

```
{{system_message}}
### User:
{{prompt}}
### Assistant:
```

or Tiny CoT:
```
### User:
{{prompt}}
### Rationale:
[...]
### Answer:
```

---

## Download & run with [cnvrs](https://twitter.com/cnvrsai) on iPhone, iPad, and Mac!

![cnvrs.ai](https://pbs.twimg.com/profile_images/1744049151241797632/0mIP-P9e_400x400.jpg)

[cnvrs](https://testflight.apple.com/join/sFWReS7K) is the best app for private, local AI on your device:
- create & save **Characters** with custom system prompts & temperature settings
- download and experiment with any **GGUF model** you can [find on HuggingFace](https://huggingface.co/models?library=gguf)!
- make it your own with custom **Theme colors**
- powered by Metal ⚡️ & [Llama.cpp](https://github.com/ggerganov/llama.cpp), with **haptics** during response streaming!
- **try it out** yourself today, on [Testflight](https://testflight.apple.com/join/sFWReS7K)!
- follow [cnvrs on twitter](https://twitter.com/cnvrsai) to stay up to date

---

## Original Model Evaluations:

| Model                                                                  | Size   | Data                | Method        | GSM8K (5-shot) | AGIEval (English/Nous subset, acc_norm) | BIG Bench Hard (CoT, few-shot*) |
|:-----------------------------------------------------------------------|--------|:--------------------|---------------|:---------------|:----------------------------------------|:------------------------------  |
| [StableLM 3B Base](https://hf.co/stabilityai/stablelm-3b-4e1t)       | 3B     | Base                | Base          |    2.05%       | 25.14%                                  |  36.75%                           |
| [StableHermes 3B](https://hf.co/cxllin/StableHermes-3b)                | 3B     | GPT                 | SFT           |    3.64%       | 24.31%                                  | *37.28%*                        |
| [MPT 7B Instruct](https://hf.co/mosaicml/mpt-7b-instruct)              | **7B** | **Human**+Anthropic | SFT           |    2.05%       | 24.12%                                  | 11.01%                          |
| [OpenLLaMA 7B v2 open-instruct](http://hf.co/VMware/open-llama-7b-v2-open-instruct) | **7B** | **Human** (nearly: ecqa is an exception) | SFT | 8.64% | 23.21%                   | 29.84%                          |
| [StableLM Zephyr 3B](https://hf.co/stabilityai/stablelm-zephyr-3b)     | 3B     | GPT                 | DPO           |    possibly contaminated (45.72%)  | **33.31%**                   | 0.91%                           |
| [**Memphis-CoT 3B**](https://hf.co/euclaise/memphis-cot-3b)            | 3B     | **Human**           | Self-teaching |    **13.8%**       | *26.24%*                            | **38.24%**                      |

*5-shot, as performed automatically by LM Evaluation Harness bbh_cot_fewshot even with num_fewshot=0

> Memphis outperforms other primarily-human-data models that are over twice its size, along with SFT models of its size, and trades with the Zephyr DPO model. That said, Zephyr uses synthetic data, and *much* more of it.