brianmunarcajulis commited on
Commit
914500c
•
1 Parent(s): c476f62

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -109
README.md CHANGED
@@ -11,116 +11,9 @@ tags:
11
  - quantized
12
  ---
13
 
14
- # One to One Clone of ARGMAX Core ML for Development
15
 
16
- # Original Repo:
17
  https://huggingface.co/argmaxinc/whisperkit-coreml
18
 
19
- # WhisperKit Transcription Quality
20
-
21
-
22
-
23
- ## Dataset: `librispeech`
24
- Short-form Audio (<30s/clip) - 5 hours of English audiobook clips
25
-
26
- | | WER (↓) | QoI (↑) | File Size (MB) | Code Commit |
27
- |:------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------|----------:|-----------------:|:---------------------------------------------------------------|
28
- | large-v2 (WhisperOpenAIAPI) | [2.35](https://hf.co/datasets/argmaxinc/whisperkit-evals/tree/main/WhisperOpenAIAPI/openai_whisper-large-v2/librispeech) | 100 | 3100 | N/A |
29
- | [large-v2](https://hf.co/argmaxinc/whisperkit-coreml/tree/main/openai_whisper-large-v2) | [2.77](https://hf.co/datasets/argmaxinc/whisperkit-evals/tree/main/WhisperKit/openai_whisper-large-v2/librispeech) | 96.6 | 3100 | [Link](https://github.com/argmaxinc/WhisperKit/commit/2846fd9) |
30
- | [large-v2_949MB](https://hf.co/argmaxinc/whisperkit-coreml/tree/main/openai_whisper-large-v2_949MB) | [2.4](https://hf.co/datasets/argmaxinc/whisperkit-evals/tree/main/WhisperKit/openai_whisper-large-v2_949MB/librispeech) | 94.6 | 949 | [Link](https://github.com/argmaxinc/WhisperKit/commit/eca4a2e) |
31
- | [large-v2_turbo](https://hf.co/argmaxinc/whisperkit-coreml/tree/main/openai_whisper-large-v2_turbo) | [2.76](https://hf.co/datasets/argmaxinc/whisperkit-evals/tree/main/WhisperKit/openai_whisper-large-v2_turbo/librispeech) | 96.6 | 3100 | [Link](https://github.com/argmaxinc/WhisperKit/commit/2846fd9) |
32
- | [large-v2_turbo_955MB](https://hf.co/argmaxinc/whisperkit-coreml/tree/main/openai_whisper-large-v2_turbo_955MB) | [2.41](https://hf.co/datasets/argmaxinc/whisperkit-evals/tree/main/WhisperKit/openai_whisper-large-v2_turbo_955MB/librispeech) | 94.6 | 955 | [Link](https://github.com/argmaxinc/WhisperKit/commit/cf75348) |
33
- | [large-v3](https://hf.co/argmaxinc/whisperkit-coreml/tree/main/openai_whisper-large-v3) | [2.04](https://hf.co/datasets/argmaxinc/whisperkit-evals/tree/main/WhisperKit/openai_whisper-large-v3/librispeech) | 95.2 | 3100 | [Link](https://github.com/argmaxinc/WhisperKit/commit/2846fd9) |
34
- | [large-v3_turbo](https://hf.co/argmaxinc/whisperkit-coreml/tree/main/openai_whisper-large-v3_turbo) | [2.03](https://hf.co/datasets/argmaxinc/whisperkit-evals/tree/main/WhisperKit/openai_whisper-large-v3_turbo/librispeech) | 95.4 | 3100 | [Link](https://github.com/argmaxinc/WhisperKit/commit/2846fd9) |
35
- | [large-v3_turbo_954MB](https://hf.co/argmaxinc/whisperkit-coreml/tree/main/openai_whisper-large-v3_turbo_954MB) | [2.47](https://hf.co/datasets/argmaxinc/whisperkit-evals/tree/main/WhisperKit/openai_whisper-large-v3_turbo_954MB/librispeech) | 93.9 | 954 | [Link](https://github.com/argmaxinc/WhisperKit/commit/cf75348) |
36
- | [distil-large-v3](https://hf.co/argmaxinc/whisperkit-coreml/tree/main/distil-whisper_distil-large-v3) | [2.47](https://hf.co/datasets/argmaxinc/whisperkit-evals/tree/main/WhisperKit/distil-whisper_distil-large-v3/librispeech) | 89.7 | 1510 | [Link](https://github.com/argmaxinc/WhisperKit/commit/cf75348) |
37
- | [distil-large-v3_594MB](https://hf.co/argmaxinc/whisperkit-coreml/tree/main/distil-whisper_distil-large-v3_594MB) | [2.96](https://hf.co/datasets/argmaxinc/whisperkit-evals/tree/main/WhisperKit/distil-whisper_distil-large-v3_594MB/librispeech) | 85.4 | 594 | [Link](https://github.com/argmaxinc/WhisperKit/commit/508240f) |
38
- | [distil-large-v3_turbo](https://hf.co/argmaxinc/whisperkit-coreml/tree/main/distil-whisper_distil-large-v3_turbo) | [2.47](https://hf.co/datasets/argmaxinc/whisperkit-evals/tree/main/WhisperKit/distil-whisper_distil-large-v3_turbo/librispeech) | 89.7 | 1510 | [Link](https://github.com/argmaxinc/WhisperKit/commit/508240f) |
39
- | [distil-large-v3_turbo_600MB](https://hf.co/argmaxinc/whisperkit-coreml/tree/main/distil-whisper_distil-large-v3_turbo_600MB) | [2.78](https://hf.co/datasets/argmaxinc/whisperkit-evals/tree/main/WhisperKit/distil-whisper_distil-large-v3_turbo_600MB/librispeech) | 86.2 | 600 | [Link](https://github.com/argmaxinc/WhisperKit/commit/ae1cf96) |
40
- | [small.en](https://hf.co/argmaxinc/whisperkit-coreml/tree/main/openai_whisper-small.en) | [3.12](https://hf.co/datasets/argmaxinc/whisperkit-evals/tree/main/WhisperKit/openai_whisper-small.en/librispeech) | 85.8 | 483 | [Link](https://github.com/argmaxinc/WhisperKit/commit/228630c) |
41
- | [small](https://hf.co/argmaxinc/whisperkit-coreml/tree/main/openai_whisper-small) | [3.45](https://hf.co/datasets/argmaxinc/whisperkit-evals/tree/main/WhisperKit/openai_whisper-small/librispeech) | 83 | 483 | [Link](https://github.com/argmaxinc/WhisperKit/commit/228630c) |
42
- | [base.en](https://hf.co/argmaxinc/whisperkit-coreml/tree/main/openai_whisper-base.en) | [3.98](https://hf.co/datasets/argmaxinc/whisperkit-evals/tree/main/WhisperKit/openai_whisper-base.en/librispeech) | 75.3 | 145 | [Link](https://github.com/argmaxinc/WhisperKit/commit/228630c) |
43
- | [base](https://hf.co/argmaxinc/whisperkit-coreml/tree/main/openai_whisper-base) | [4.97](https://hf.co/datasets/argmaxinc/whisperkit-evals/tree/main/WhisperKit/openai_whisper-base/librispeech) | 67.2 | 145 | [Link](https://github.com/argmaxinc/WhisperKit/commit/228630c) |
44
- | [tiny.en](https://hf.co/argmaxinc/whisperkit-coreml/tree/main/openai_whisper-tiny.en) | [5.61](https://hf.co/datasets/argmaxinc/whisperkit-evals/tree/main/WhisperKit/openai_whisper-tiny.en/librispeech) | 63.9 | 66 | [Link](https://github.com/argmaxinc/WhisperKit/commit/228630c) |
45
- | [tiny](https://hf.co/argmaxinc/whisperkit-coreml/tree/main/openai_whisper-tiny) | [7.47](https://hf.co/datasets/argmaxinc/whisperkit-evals/tree/main/WhisperKit/openai_whisper-tiny/librispeech) | 52.5 | 66 | [Link](https://github.com/argmaxinc/WhisperKit/commit/228630c) |
46
-
47
- ## Dataset: `earnings22`
48
- Long-Form Audio (>1hr/clip) - 120 hours of earnings call recordings in English with various accents
49
-
50
- | | WER (↓) | QoI (↑) | File Size (MB) | Code Commit |
51
- |:------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------|----------:|-----------------:|:---------------------------------------------------------------|
52
- | large-v2 (WhisperOpenAIAPI) | [16.27](https://hf.co/datasets/argmaxinc/whisperkit-evals/tree/main/WhisperOpenAIAPI/openai_whisper-large-v2/earnings22) | 100 | 3100 | N/A |
53
- | [large-v3](https://hf.co/argmaxinc/whisperkit-coreml/tree/main/openai_whisper-large-v3) | [15.17](https://hf.co/datasets/argmaxinc/whisperkit-evals/tree/main/WhisperKit/openai_whisper-large-v3/earnings22) | 58.5 | 3100 | [Link](https://github.com/argmaxinc/WhisperKit/commit/2846fd9) |
54
- | [distil-large-v3](https://hf.co/argmaxinc/whisperkit-coreml/tree/main/distil-whisper_distil-large-v3) | [15.28](https://hf.co/datasets/argmaxinc/whisperkit-evals/tree/main/WhisperKit/distil-whisper_distil-large-v3/earnings22) | 46.3 | 1510 | [Link](https://github.com/argmaxinc/WhisperKit/commit/508240f) |
55
- | [base.en](https://hf.co/argmaxinc/whisperkit-coreml/tree/main/openai_whisper-base.en) | [23.49](https://hf.co/datasets/argmaxinc/whisperkit-evals/tree/main/WhisperKit/openai_whisper-base.en/earnings22) | 6.5 | 145 | [Link](https://github.com/argmaxinc/WhisperKit/commit/dda6571) |
56
- | [tiny.en](https://hf.co/argmaxinc/whisperkit-coreml/tree/main/openai_whisper-tiny.en) | [28.64](https://hf.co/datasets/argmaxinc/whisperkit-evals/tree/main/WhisperKit/openai_whisper-tiny.en/earnings22) | 5.7 | 66 | [Link](https://github.com/argmaxinc/WhisperKit/commit/dda6571) |
57
-
58
-
59
- ### Explanation
60
-
61
- We believe that rigorously measuring the quality of inference is necessary for developers and
62
- enterprises to make informed decisions when opting to use optimized or compressed variants of
63
- any machine learning model in production. To contextualize `WhisperKit`, we take the following Whisper
64
- implementations and benchmark them using a consistent evaluation harness:
65
-
66
- Server-side:
67
- - `WhisperOpenAIAPI`: [OpenAI's Whisper API](https://platform.openai.com/docs/guides/speech-to-text)
68
-
69
- ($0.36 per hour of audio as of 02/29/24, 25MB file size limit per request)
70
-
71
- On-device:
72
- - `WhisperKit`: Argmax's implementation [[Eval Harness]](https://github.com/argmaxinc/whisperkittools/blob/main/whisperkit/pipelines.py#L100) [[Repo]](https://github.com/argmaxinc/WhisperKit)
73
- - `whisper.cpp`: A C++ implementation form ggerganov [[Eval Harness]](https://github.com/argmaxinc/whisperkittools/blob/main/whisperkit/pipelines.py#L212) [[Repo]](https://github.com/ggerganov/whisper.cpp)
74
- - `WhisperMLX`: A Python implementation from Apple MLX [[Eval Harness]](https://github.com/argmaxinc/whisperkittools/blob/main/whisperkit/pipelines.py#L338) [[Repo]](https://github.com/ml-explore/mlx-examples/blob/main/whisper/whisper/transcribe.py)
75
-
76
- (All on-device implementations are available for free under MIT license as of 03/19/2024)
77
-
78
- `WhisperOpenAIAPI` sets the reference and we assume that it is using the equivalent of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2)
79
- in float16 precision along with additional undisclosed optimizations from OpenAI. In all measurements, we care primarily about per-example no-regressions (quantified as `qoi` below)
80
- which is a stricter metric compared to dataset average [Word Error RATE (WER)](https://en.wikipedia.org/wiki/Word_error_rate). A 100% `qoi` preserves perfect backwards-compatibility on the test distribution and avoids "perceived regressions", the phenomenon
81
- where per-example known behavior changes after a code/model update and causes divergence in downstream code or breaks the user experience itself (even if dataset averages might stay flat
82
- across updates). Pseudocode for `qoi`:
83
-
84
- ```python
85
- qoi = []
86
- for example in dataset:
87
- no_regression = wer(optimized_model(example)) <= wer(reference_model(example))
88
- qoi.append(no_regression)
89
- qoi = (sum(qoi) / len(qoi)) * 100.
90
- ```
91
-
92
- Note that the ordering of models with respect to `WER` does not necessarily match the ordering with respect to `QoI`. This is because the reference model gets assigned
93
- a QoI of 100% by definition. Any per-example regression by other implementations get penalized while per-example improvements are not rewarded. `QoI` (higher is better) matters
94
- where the production behavior is established by the reference results and the goal is to not regress when switching to an optimized or compressed model. On the other hand,
95
- `WER` (lower is better) matters when there is no established production behavior and one is picking the best quality versus model size trade off point.
96
-
97
- We anticipate developers that use Whisper (or similar models) in production to have their own Quality Assurance test sets and [whisperkittools](https://github.com/argmaxinc/whisperkittools) offers
98
- the tooling necessary to run the same measurements on such custom test sets, please see the [Model Evaluation on Custom Dataset]((https://github.com/argmaxinc/whisperkittools)) for details.
99
-
100
- ### Why are there so many Whisper versions?
101
- WhisperKit is an SDK for building speech-to-text features in apps across a wide range of Apple devices. We are working towards abstracting away the model versioning from the developer so WhisperKit
102
- "just works" by deploying the highest-quality model version that a particular device can execute. In the interim, we leave the choice to the developer by providing quality and size trade-offs.
103
-
104
-
105
- ### Datasets
106
- - [librispeech](https://huggingface.co/datasets/argmaxinc/librispeech): ~5 hours of short English audio clips, tests short-form transcription quality
107
- - [earnings22](https://huggingface.co/datasets/argmaxinc/earnings22): ~120 hours of English audio clips from earnings calls with various accents, tests long-form transcription quality
108
-
109
- ### Reproducing Results
110
- Benchmark results on this page were automatically generated by [whisperkittools](https://github.com/argmaxinc/whisperkittools) using our cluster of Apple Silicon Macs as self-hosted runners on
111
- Github Actions. We periodically recompute these benchmarks as part of our CI pipeline. Due to [security concerns](https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#hardening-for-self-hosted-runners),
112
- we are unable to open up the cluster to the public. However, any Apple Silicon Mac (even with 8GB RAM) can be used to
113
- run identical [evaluation jobs](#evaluation) locally. For reference, our M2 Ultra devices complete a `librispeech` + `openai/whisper-large-v3`
114
- evaluation in under 1 hour regardless of the Whisper implementation. Oldest Apple Silicon Macs should take less than 1 day to complete the same evaluation.
115
-
116
-
117
-
118
- ### Glossary
119
-
120
- - `_turbo`: Indicates the presence of additional optimizations (not compression) to unlock streaming transcription
121
- as described in our [Blog Post](https://www.takeargmax.com/blog/whisperkit).
122
-
123
- - `_*MB`: Indicates the presence of model compression. Instead of cluttering the filename with details like
124
- `_AudioEncoder-5.8bits_TextDecoder-6.1bits_QLoRA-rank=16`, we choose to summarize the compression spec as the
125
- resulting total file size since this is what matters to developers in production.
126
 
 
11
  - quantized
12
  ---
13
 
14
+ # Models from Argmax for Whisper For Development
15
 
16
+ # Original Repo Source of Models:
17
  https://huggingface.co/argmaxinc/whisperkit-coreml
18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19