|
from skimage import io |
|
import torch, os |
|
from PIL import Image |
|
from briarmbg import BriaRMBG |
|
from utilities import preprocess_image, postprocess_image |
|
|
|
def example_inference(): |
|
|
|
model_path = f"{os.path.dirname(__file__)}/model.pth" |
|
im_path = f"{os.path.dirname(__file__)}/example_input.jpg" |
|
|
|
net = BriaRMBG() |
|
if torch.cuda.is_available(): |
|
net.load_state_dict(torch.load(model_path)).cuda() |
|
else: |
|
net.load_state_dict(torch.load(model_path,map_location="cpu")) |
|
net.eval() |
|
|
|
|
|
model_input_size = [1024,1024] |
|
orig_im = io.imread(im_path) |
|
orig_im_size = orig_im.shape[0:2] |
|
image = preprocess_image(orig_im, model_input_size) |
|
|
|
if torch.cuda.is_available(): |
|
image=image.cuda() |
|
|
|
|
|
result=net(image) |
|
|
|
|
|
result_image = postprocess_image(result[0][0], orig_im_size) |
|
|
|
|
|
pil_im = Image.fromarray(result_image) |
|
no_bg_image = Image.new("RGBA", pil_im.size, (0,0,0,0)) |
|
orig_image = Image.open(im_path) |
|
no_bg_image.paste(orig_image, mask=pil_im) |
|
no_bg_image.save("example_image_no_bg.png") |
|
|
|
|
|
if __name__ == "__main__": |
|
example_inference() |