Diffusers
File size: 28,840 Bytes
040ea64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
# type: ignore
# Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn

from transformer_bria import TimestepProjEmbeddings
from diffusers.models.controlnet import zero_module, BaseOutput
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import PeftAdapterMixin
from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
from diffusers.models.modeling_outputs import Transformer2DModelOutput

# from transformer_flux import FluxSingleTransformerBlock, FluxTransformerBlock, EmbedND
from diffusers.models.transformers.transformer_flux import EmbedND, FluxSingleTransformerBlock, FluxTransformerBlock

from diffusers.models.attention_processor import AttentionProcessor

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
class BriaControlNetOutput(BaseOutput):
    controlnet_block_samples: Tuple[torch.Tensor]
    controlnet_single_block_samples: Tuple[torch.Tensor]


class BriaControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        patch_size: int = 1,
        in_channels: int = 64,
        num_layers: int = 19,
        num_single_layers: int = 38,
        attention_head_dim: int = 128,
        num_attention_heads: int = 24,
        joint_attention_dim: int = 4096,
        pooled_projection_dim: int = 768,
        guidance_embeds: bool = False,
        axes_dims_rope: List[int] = [16, 56, 56],
        num_mode: int = None,
        rope_theta: int = 10000,
        time_theta: int = 10000,
    ):
        super().__init__()
        self.out_channels = in_channels
        self.inner_dim = num_attention_heads * attention_head_dim

        # self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
        self.pos_embed = EmbedND(dim=self.inner_dim, theta=rope_theta, axes_dim=axes_dims_rope)

        # text_time_guidance_cls = (
        # CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
        # )
        # self.time_text_embed = text_time_guidance_cls(
        # embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
        # )
        self.time_embed = TimestepProjEmbeddings(
            embedding_dim=self.inner_dim, time_theta=time_theta
        )
        
        self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
        self.x_embedder = torch.nn.Linear(in_channels, self.inner_dim)

        self.transformer_blocks = nn.ModuleList(
            [
                FluxTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                )
                for i in range(num_layers)
            ]
        )

        self.single_transformer_blocks = nn.ModuleList(
            [
                FluxSingleTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                )
                for i in range(num_single_layers)
            ]
        )

        # controlnet_blocks
        self.controlnet_blocks = nn.ModuleList([])
        for _ in range(len(self.transformer_blocks)):
            self.controlnet_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim)))

        self.controlnet_single_blocks = nn.ModuleList([])
        for _ in range(len(self.single_transformer_blocks)):
            self.controlnet_single_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim)))

        self.union = num_mode is not None and num_mode > 0
        if self.union:
            self.controlnet_mode_embedder = nn.Embedding(num_mode, self.inner_dim)

        self.controlnet_x_embedder = zero_module(torch.nn.Linear(in_channels, self.inner_dim))

        self.gradient_checkpointing = False

    @property
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
    def attn_processors(self):
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor()

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
    def set_attn_processor(self, processor):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    @classmethod
    def from_transformer(
        cls,
        transformer,
        num_layers: int = 4,
        num_single_layers: int = 10,
        attention_head_dim: int = 128,
        num_attention_heads: int = 24,
        load_weights_from_transformer=True,
    ):
        config = transformer.config
        config["num_layers"] = num_layers
        config["num_single_layers"] = num_single_layers
        config["attention_head_dim"] = attention_head_dim
        config["num_attention_heads"] = num_attention_heads

        controlnet = cls(**config)

        if load_weights_from_transformer:
            controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict())
            controlnet.time_text_embed.load_state_dict(transformer.time_text_embed.state_dict())
            controlnet.context_embedder.load_state_dict(transformer.context_embedder.state_dict())
            controlnet.x_embedder.load_state_dict(transformer.x_embedder.state_dict())
            controlnet.transformer_blocks.load_state_dict(transformer.transformer_blocks.state_dict(), strict=False)
            controlnet.single_transformer_blocks.load_state_dict(
                transformer.single_transformer_blocks.state_dict(), strict=False
            )

            controlnet.controlnet_x_embedder = zero_module(controlnet.controlnet_x_embedder)

        return controlnet

    def forward(
        self,
        hidden_states: torch.Tensor,
        controlnet_cond: torch.Tensor,
        controlnet_mode: torch.Tensor = None,
        conditioning_scale: float = 1.0,
        encoder_hidden_states: torch.Tensor = None,
        pooled_projections: torch.Tensor = None,
        timestep: torch.LongTensor = None,
        img_ids: torch.Tensor = None,
        txt_ids: torch.Tensor = None,
        guidance: torch.Tensor = None,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        return_dict: bool = True,
    ) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
        """
        The [`FluxTransformer2DModel`] forward method.

        Args:
            hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
                Input `hidden_states`.
            controlnet_cond (`torch.Tensor`):
                The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
            controlnet_mode (`torch.Tensor`):
                The mode tensor of shape `(batch_size, 1)`.
            conditioning_scale (`float`, defaults to `1.0`):
                The scale factor for ControlNet outputs.
            encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
                Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
            pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
                from the embeddings of input conditions.
            timestep ( `torch.LongTensor`):
                Used to indicate denoising step.
            block_controlnet_hidden_states: (`list` of `torch.Tensor`):
                A list of tensors that if specified are added to the residuals of transformer blocks.
            joint_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
                tuple.

        Returns:
            If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
            `tuple` where the first element is the sample tensor.
        """
        if guidance is not None:
            print("guidance is not supported in BriaControlNetModel")
        if pooled_projections is not None:
            print("pooled_projections is not supported in BriaControlNetModel")
        if joint_attention_kwargs is not None:
            joint_attention_kwargs = joint_attention_kwargs.copy()
            lora_scale = joint_attention_kwargs.pop("scale", 1.0)
        else:
            lora_scale = 1.0

        if USE_PEFT_BACKEND:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self, lora_scale)
        else:
            if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
                logger.warning(
                    "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
                )
        hidden_states = self.x_embedder(hidden_states)

        # add
        hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond)

        timestep = timestep.to(hidden_states.dtype)  # Original code was * 1000
        if guidance is not None:
            guidance = guidance.to(hidden_states.dtype)  # Original code was * 1000
        else:
            guidance = None
        # temb = (
        # self.time_text_embed(timestep, pooled_projections)
        # if guidance is None
        # else self.time_text_embed(timestep, guidance, pooled_projections)
        # )
        temb = self.time_embed(timestep, dtype=hidden_states.dtype)

        encoder_hidden_states = self.context_embedder(encoder_hidden_states)

        if self.union:
            # union mode
            if controlnet_mode is None:
                raise ValueError("`controlnet_mode` cannot be `None` when applying ControlNet-Union")
            # union mode emb
            controlnet_mode_emb = self.controlnet_mode_embedder(controlnet_mode)
            if controlnet_mode_emb.shape[0] < encoder_hidden_states.shape[0]:
                controlnet_mode_emb = controlnet_mode_emb.expand(encoder_hidden_states.shape[0], 1, 2048) 
            encoder_hidden_states = torch.cat([controlnet_mode_emb, encoder_hidden_states], dim=1)
            txt_ids = torch.cat((txt_ids[:, 0:1, :], txt_ids), dim=1)

        # if txt_ids.ndim == 3:
        #     logger.warning(
        #         "Passing `txt_ids` 3d torch.Tensor is deprecated."
        #         "Please remove the batch dimension and pass it as a 2d torch Tensor"
        #     )
        #     txt_ids = txt_ids[0]
        # if img_ids.ndim == 3:
        #     logger.warning(
        #         "Passing `img_ids` 3d torch.Tensor is deprecated."
        #         "Please remove the batch dimension and pass it as a 2d torch Tensor"
        #     )
        #     img_ids = img_ids[0]

        # ids = torch.cat((txt_ids, img_ids), dim=0)
        ids = torch.cat((txt_ids, img_ids), dim=1)
        image_rotary_emb = self.pos_embed(ids)

        block_samples = ()
        for index_block, block in enumerate(self.transformer_blocks):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    encoder_hidden_states,
                    temb,
                    image_rotary_emb,
                    **ckpt_kwargs,
                )

            else:
                encoder_hidden_states, hidden_states = block(
                    hidden_states=hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    temb=temb,
                    image_rotary_emb=image_rotary_emb,
                )
            block_samples = block_samples + (hidden_states,)

        hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)

        single_block_samples = ()
        for index_block, block in enumerate(self.single_transformer_blocks):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    temb,
                    image_rotary_emb,
                    **ckpt_kwargs,
                )

            else:
                hidden_states = block(
                    hidden_states=hidden_states,
                    temb=temb,
                    image_rotary_emb=image_rotary_emb,
                )
            single_block_samples = single_block_samples + (hidden_states[:, encoder_hidden_states.shape[1] :],)

        # controlnet block
        controlnet_block_samples = ()
        for block_sample, controlnet_block in zip(block_samples, self.controlnet_blocks):
            block_sample = controlnet_block(block_sample)
            controlnet_block_samples = controlnet_block_samples + (block_sample,)

        controlnet_single_block_samples = ()
        for single_block_sample, controlnet_block in zip(single_block_samples, self.controlnet_single_blocks):
            single_block_sample = controlnet_block(single_block_sample)
            controlnet_single_block_samples = controlnet_single_block_samples + (single_block_sample,)

        # scaling
        controlnet_block_samples = [sample * conditioning_scale for sample in controlnet_block_samples]
        controlnet_single_block_samples = [sample * conditioning_scale for sample in controlnet_single_block_samples]

        controlnet_block_samples = None if len(controlnet_block_samples) == 0 else controlnet_block_samples
        controlnet_single_block_samples = (
            None if len(controlnet_single_block_samples) == 0 else controlnet_single_block_samples
        )

        if USE_PEFT_BACKEND:
            # remove `lora_scale` from each PEFT layer
            unscale_lora_layers(self, lora_scale)

        if not return_dict:
            return (controlnet_block_samples, controlnet_single_block_samples)

        return BriaControlNetOutput(
            controlnet_block_samples=controlnet_block_samples,
            controlnet_single_block_samples=controlnet_single_block_samples,
        )


class BriaMultiControlNetModel(ModelMixin):
    r"""
    `BriaMultiControlNetModel` wrapper class for Multi-BriaControlNetModel

    This module is a wrapper for multiple instances of the `BriaControlNetModel`. The `forward()` API is designed to be
    compatible with `BriaControlNetModel`.

    Args:
        controlnets (`List[BriaControlNetModel]`):
            Provides additional conditioning to the unet during the denoising process. You must set multiple
            `BriaControlNetModel` as a list.
    """

    def __init__(self, controlnets):
        super().__init__()
        self.nets = nn.ModuleList(controlnets)

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        controlnet_cond: List[torch.tensor],
        controlnet_mode: List[torch.tensor],
        conditioning_scale: List[float],
        encoder_hidden_states: torch.Tensor = None,
        pooled_projections: torch.Tensor = None,
        timestep: torch.LongTensor = None,
        img_ids: torch.Tensor = None,
        txt_ids: torch.Tensor = None,
        guidance: torch.Tensor = None,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        return_dict: bool = True,
    ) -> Union[BriaControlNetOutput, Tuple]:
        # ControlNet-Union with multiple conditions
        # only load one ControlNet for saving memories
        if len(self.nets) == 1 and self.nets[0].union:
            controlnet = self.nets[0]

            for i, (image, mode, scale) in enumerate(zip(controlnet_cond, controlnet_mode, conditioning_scale)):
                block_samples, single_block_samples = controlnet(
                    hidden_states=hidden_states,
                    controlnet_cond=image,
                    controlnet_mode=mode[:, None],
                    conditioning_scale=scale,
                    timestep=timestep,
                    guidance=guidance,
                    pooled_projections=pooled_projections,
                    encoder_hidden_states=encoder_hidden_states,
                    txt_ids=txt_ids,
                    img_ids=img_ids,
                    joint_attention_kwargs=joint_attention_kwargs,
                    return_dict=return_dict,
                )

                # merge samples
                if i == 0:
                    control_block_samples = block_samples
                    control_single_block_samples = single_block_samples
                else:
                    control_block_samples = [
                        control_block_sample + block_sample
                        for control_block_sample, block_sample in zip(control_block_samples, block_samples)
                    ]

                    control_single_block_samples = [
                        control_single_block_sample + block_sample
                        for control_single_block_sample, block_sample in zip(
                            control_single_block_samples, single_block_samples
                        )
                    ]

        # Regular Multi-ControlNets
        # load all ControlNets into memories
        else:
            for i, (image, mode, scale, controlnet) in enumerate(
                zip(controlnet_cond, controlnet_mode, conditioning_scale, self.nets)
            ):
                block_samples, single_block_samples = controlnet(
                    hidden_states=hidden_states,
                    controlnet_cond=image,
                    controlnet_mode=mode[:, None],
                    conditioning_scale=scale,
                    timestep=timestep,
                    guidance=guidance,
                    pooled_projections=pooled_projections,
                    encoder_hidden_states=encoder_hidden_states,
                    txt_ids=txt_ids,
                    img_ids=img_ids,
                    joint_attention_kwargs=joint_attention_kwargs,
                    return_dict=return_dict,
                )

                # merge samples
                if i == 0:
                    control_block_samples = block_samples
                    control_single_block_samples = single_block_samples
                else:
                    if block_samples is not None and control_block_samples is not None:
                        control_block_samples = [
                            control_block_sample + block_sample
                            for control_block_sample, block_sample in zip(control_block_samples, block_samples)
                        ]
                    if single_block_samples is not None and control_single_block_samples is not None:
                        control_single_block_samples = [
                            control_single_block_sample + block_sample
                            for control_single_block_sample, block_sample in zip(
                                control_single_block_samples, single_block_samples
                            )
                        ]

        return control_block_samples, control_single_block_samples



class BriaMultiControlNetModel(ModelMixin):
    r"""
    `BriaMultiControlNetModel` wrapper class for Multi-BriaControlNetModel

    This module is a wrapper for multiple instances of the `BriaControlNetModel`. The `forward()` API is designed to be
    compatible with `BriaControlNetModel`.

    Args:
        controlnets (`List[BriaControlNetModel]`):
            Provides additional conditioning to the unet during the denoising process. You must set multiple
            `BriaControlNetModel` as a list.
    """

    def __init__(self, controlnets):
        super().__init__()
        self.nets = nn.ModuleList(controlnets)

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        controlnet_cond: List[torch.tensor],
        controlnet_mode: List[torch.tensor],
        conditioning_scale: List[float],
        encoder_hidden_states: torch.Tensor = None,
        pooled_projections: torch.Tensor = None,
        timestep: torch.LongTensor = None,
        img_ids: torch.Tensor = None,
        txt_ids: torch.Tensor = None,
        guidance: torch.Tensor = None,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        return_dict: bool = True,
    ) -> Union[BriaControlNetOutput, Tuple]:
        # ControlNet-Union with multiple conditions
        # only load one ControlNet for saving memories
        if len(self.nets) == 1 and self.nets[0].union:
            controlnet = self.nets[0]

            for i, (image, mode, scale) in enumerate(zip(controlnet_cond, controlnet_mode, conditioning_scale)):
                block_samples, single_block_samples = controlnet(
                    hidden_states=hidden_states,
                    controlnet_cond=image,
                    controlnet_mode=mode[:, None],
                    conditioning_scale=scale,
                    timestep=timestep,
                    guidance=guidance,
                    pooled_projections=pooled_projections,
                    encoder_hidden_states=encoder_hidden_states,
                    txt_ids=txt_ids,
                    img_ids=img_ids,
                    joint_attention_kwargs=joint_attention_kwargs,
                    return_dict=return_dict,
                )

                # merge samples
                if i == 0:
                    control_block_samples = block_samples
                    control_single_block_samples = single_block_samples
                else:
                    control_block_samples = [
                        control_block_sample + block_sample
                        for control_block_sample, block_sample in zip(control_block_samples, block_samples)
                    ]

                    control_single_block_samples = [
                        control_single_block_sample + block_sample
                        for control_single_block_sample, block_sample in zip(
                            control_single_block_samples, single_block_samples
                        )
                    ]

        # Regular Multi-ControlNets
        # load all ControlNets into memories
        else:
            for i, (image, mode, scale, controlnet) in enumerate(
                zip(controlnet_cond, controlnet_mode, conditioning_scale, self.nets)
            ):
                block_samples, single_block_samples = controlnet(
                    hidden_states=hidden_states,
                    controlnet_cond=image,
                    controlnet_mode=mode[:, None],
                    conditioning_scale=scale,
                    timestep=timestep,
                    guidance=guidance,
                    pooled_projections=pooled_projections,
                    encoder_hidden_states=encoder_hidden_states,
                    txt_ids=txt_ids,
                    img_ids=img_ids,
                    joint_attention_kwargs=joint_attention_kwargs,
                    return_dict=return_dict,
                )

                # merge samples
                if i == 0:
                    control_block_samples = block_samples
                    control_single_block_samples = single_block_samples
                else:
                    if block_samples is not None and control_block_samples is not None:
                        control_block_samples = [
                            control_block_sample + block_sample
                            for control_block_sample, block_sample in zip(control_block_samples, block_samples)
                        ]
                    if single_block_samples is not None and control_single_block_samples is not None:
                        control_single_block_samples = [
                            control_single_block_sample + block_sample
                            for control_single_block_sample, block_sample in zip(
                                control_single_block_samples, single_block_samples
                            )
                        ]

        return control_block_samples, control_single_block_samples