yonishafir commited on
Commit
0a85d32
·
verified ·
1 Parent(s): 9e9b734

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +237 -0
README.md ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ license_name: bria-2.3
4
+ license: other
5
+ license_link: https://bria.ai/bria-huggingface-model-license-agreement/
6
+ library_name: diffusers
7
+ inference: false
8
+ tags:
9
+ - text-to-image
10
+ - legal liability
11
+ - commercial use
12
+ - ID preservation Adapter
13
+ extra_gated_description: Model weights from BRIA AI can be obtained with the purchase of a commercial license. Fill in the form below and we reach out to you.
14
+ extra_gated_heading: "Fill in this form to request a commercial license for the model"
15
+ extra_gated_fields:
16
+ Name: text
17
+ Company/Org name: text
18
+ Org Type (Early/Growth Startup, Enterprise, Academy): text
19
+ Role: text
20
+ Country: text
21
+ Email: text
22
+ By submitting this form, I agree to BRIA’s Privacy policy and Terms & conditions, see links below: checkbox
23
+ ---
24
+
25
+
26
+
27
+ # BRIA 2.3 ID preservation Adapter
28
+
29
+
30
+ Trained exclusively on the largest multi-source commercial-grade licensed dataset, BRIA 2.3 ID preservation Adapter guarantees best quality while safe for commercial use. The model provides full legal liability coverage for copyright and privacy infrigement and harmful content mitigation, as our dataset does not represent copyrighted materials, such as fictional characters, logos or trademarks, public figures, harmful content or privacy infringing content.
31
+
32
+
33
+ BRIA 2.3 ID preservation Adapter is a model designed to allows various style transfer operations or tweaks on your facial image using textual prompts. The model is fully compatible with auxiliary models like ControlNets and LoRAs, enabling seamless integration into existing workflows.
34
+
35
+ This model is optimized to work seamlessly high resolution upper body part facial imags.
36
+
37
+
38
+ Join our [Discord community](https://discord.gg/Nxe9YW9zHS) for more information, tutorials, tools, and to connect with other users!
39
+
40
+
41
+ # What's New
42
+
43
+ BRIA 2.3 ID preservation Adapter can be applied on top of BRIA 2.3 Text-to-Image and therefore enable to use BRIA auxiliary models.
44
+
45
+
46
+
47
+
48
+
49
+ ### Model Description
50
+
51
+ - **Developed by:** BRIA AI
52
+ - **Model type:** Latent diffusion image-to-image model
53
+ - **License:** [bria-2.3 inpainting Licensing terms & conditions](https://bria.ai/bria-huggingface-model-license-agreement/).
54
+ - Purchase is required to license and access the model.
55
+ - **Model Description:** BRIA 2.3 ID preservation Adapter was trained exclusively on a professional-grade, licensed dataset. It is designed for commercial use and includes full legal liability coverage.
56
+ - **Resources for more information:** [BRIA AI](https://bria.ai/)
57
+
58
+
59
+
60
+
61
+ ### Get Access to the source code and pre-trained model
62
+ Interested in BRIA 2.3 ID preservation Adapter? Our Model is available for purchase.
63
+
64
+ **Purchasing access to BRIA 2.3 ID preservation Adapter ensures royalty management and full liability for commercial use.**
65
+
66
+
67
+ *Are you a startup or a student?* We encourage you to apply for our specialized Academia and [Startup Programs](https://pages.bria.ai/the-visual-generative-ai-platform-for-builders-startups-plan?_gl=1*cqrl81*_ga*MTIxMDI2NzI5OC4xNjk5NTQ3MDAz*_ga_WRN60H46X4*MTcwOTM5OTMzNC4yNzguMC4xNzA5Mzk5MzM0LjYwLjAuMA..) to gain access. These programs are designed to support emerging businesses and academic pursuits with our cutting-edge technology.
68
+
69
+
70
+ **Contact us today to unlock the potential of BRIA 2.3 ID preservation Adapter!**
71
+
72
+ By submitting the form above, you agree to BRIA’s [Privacy policy](https://bria.ai/privacy-policy/) and [Terms & conditions](https://bria.ai/terms-and-conditions/).
73
+
74
+
75
+ ### How To Use
76
+ ```python
77
+ opencv-python==4.10.0.84
78
+ torch==2.4.0
79
+ torchvision==0.19.0
80
+ pillow==10.4.0
81
+ transformers==4.43.4
82
+ diffusers==0.29.2
83
+ ```
84
+
85
+
86
+ ```python
87
+ import gc
88
+ import os
89
+ import random
90
+ import gradio as gr
91
+
92
+
93
+ import cv2
94
+ import torch
95
+ import numpy as np
96
+ from PIL import Image
97
+
98
+ from transformers import CLIPVisionModelWithProjection
99
+ from diffusers.utils import load_image
100
+ from diffusers.models import ControlNetModel
101
+ from insightface.app import FaceAnalysis
102
+
103
+ import io
104
+ import spaces
105
+
106
+ from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline, draw_kps
107
+
108
+ import pandas as pd
109
+ import json
110
+ import requests
111
+ from PIL import Image
112
+ from io import BytesIO
113
+
114
+
115
+ def resize_img(input_image, max_side=1280, min_side=1024, size=None,
116
+ pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
117
+
118
+ w, h = input_image.size
119
+ if size is not None:
120
+ w_resize_new, h_resize_new = size
121
+ else:
122
+ ratio = min_side / min(h, w)
123
+ w, h = round(ratio*w), round(ratio*h)
124
+ ratio = max_side / max(h, w)
125
+ input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
126
+ w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
127
+ h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
128
+ input_image = input_image.resize([w_resize_new, h_resize_new], mode)
129
+
130
+ if pad_to_max_side:
131
+ res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
132
+ offset_x = (max_side - w_resize_new) // 2
133
+ offset_y = (max_side - h_resize_new) // 2
134
+ res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
135
+ input_image = Image.fromarray(res)
136
+ return input_image
137
+
138
+
139
+ def make_canny_condition(image, min_val=100, max_val=200, w_bilateral=True):
140
+ if w_bilateral:
141
+ image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
142
+ bilateral_filtered_image = cv2.bilateralFilter(image, d=9, sigmaColor=75, sigmaSpace=75)
143
+ image = cv2.Canny(bilateral_filtered_image, min_val, max_val)
144
+ else:
145
+ image = np.array(image)
146
+ image = cv2.Canny(image, min_val, max_val)
147
+ image = image[:, :, None]
148
+ image = np.concatenate([image, image, image], axis=2)
149
+ image = Image.fromarray(image)
150
+ return image
151
+
152
+
153
+ default_negative_prompt = "Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"
154
+
155
+ # Load face detection and recognition package
156
+ app = FaceAnalysis(name='antelopev2', root='./', providers=['CPUExecutionProvider'])
157
+ app.prepare(ctx_id=0, det_size=(640, 640))
158
+
159
+
160
+
161
+ face_adapter = f"./ip-adapter.bin"
162
+ controlnet_path = f"./controlnet"
163
+
164
+
165
+ base_model_path = f'briaai/BRIA-2.3'
166
+ resolution = 1024
167
+
168
+ controlnet_lnmks = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
169
+
170
+ controlnet_canny = ControlNetModel.from_pretrained("briaai/BRIA-2.3-ControlNet-Canny",
171
+ torch_dtype=torch.float16)
172
+
173
+ controlnet = [controlnet_lnmks, controlnet_canny]
174
+
175
+ device = "cuda" if torch.cuda.is_available() else "cpu"
176
+
177
+ image_encoder = CLIPVisionModelWithProjection.from_pretrained(
178
+ f"./checkpoints/image_encoder",
179
+ torch_dtype=torch.float16,
180
+ )
181
+
182
+ pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
183
+ base_model_path,
184
+ controlnet=controlnet,
185
+ torch_dtype=torch.float16,
186
+ image_encoder=image_encoder # For compatibility issues - needs to be there
187
+ )
188
+
189
+ pipe = pipe.to(device)
190
+
191
+ pipe.use_native_ip_adapter=True
192
+
193
+ pipe.load_ip_adapter_instantid(face_adapter)
194
+
195
+ clip_embeds=None
196
+
197
+
198
+ image_path = "<define a path to image>"
199
+ img = Image.open(image_path)
200
+
201
+ prompt = "A male with brown eyes, gray hair, short hair, and wearing sunglasses."
202
+ face_image = resize_img(face_image_orig, max_side=resolution, min_side=resolution)
203
+ face_image_padded = resize_img(face_image_orig, max_side=resolution, min_side=resolution, pad_to_max_side=True)
204
+ face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
205
+ face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face
206
+ face_emb = face_info['embedding']
207
+ face_kps = draw_kps(face_image, face_info['kps'])
208
+
209
+
210
+ # ================= Parameters =================
211
+ kps_scale = 0.6
212
+ canny_scale = 0.4
213
+ ip_adapter_scale = 0.8
214
+
215
+ if canny_scale>0.0:
216
+ canny_img = make_canny_condition(face_image, min_val=20, max_val=40, w_bilateral=True)
217
+
218
+ generator = torch.Generator(device=device).manual_seed(seed)
219
+
220
+
221
+ images = pipe(
222
+ prompt = full_prompt,
223
+ negative_prompt = default_negative_prompt,
224
+ image_embeds = face_emb,
225
+ image = [face_kps, canny_img] if canny_scale > 0.0 else face_kps,
226
+ controlnet_conditioning_scale = [kps_scale, canny_scale] if canny_scale>0.0 else kps_scale,
227
+ ip_adapter_scale = ip_adapter_scale,
228
+ num_inference_steps = num_steps,
229
+ guidance_scale = guidance_scale,
230
+ generator = generator,
231
+ visual_prompt_embds = clip_embeds,
232
+ cross_attention_kwargs = None,
233
+ num_images_per_prompt=num_images,
234
+ ).images[0]
235
+
236
+
237
+ ```