|
from transformers import PretrainedConfig |
|
|
|
class BertItalianoConfig(PretrainedConfig): |
|
model_type="BertItaliano" |
|
|
|
def __init__( |
|
self, |
|
attention_probs_dropout_prob: float = 0.1, |
|
gradient_checkpointing: bool = False, |
|
hidden_act="gelu", |
|
hidden_dropout_prob: float = 0.1, |
|
hidden_size: int = 768, |
|
initializer_range: float = 0.02, |
|
intermediate_size: int = 3072, |
|
layer_norm_eps: float = 1e-12, |
|
max_position_embeddings: int = 512, |
|
num_attention_heads: int = 12, |
|
num_hidden_layers: int = 12, |
|
pad_token_id: int = 0, |
|
position_embedding_type="absolute", |
|
transformers_version="4.10.3", |
|
torch_dtype="float32", |
|
type_vocab_size: int = 2, |
|
use_cache: bool = True, |
|
vocab_size: int = 32102, |
|
**kwargs, |
|
): |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.gradient_checkpointing = gradient_checkpointing |
|
self.hidden_act = hidden_act |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.hidden_size = hidden_size |
|
self.initializer_range = initializer_range |
|
self.intermediate_size = intermediate_size |
|
self.layer_norm_eps = layer_norm_eps |
|
self.max_position_embeddings = max_position_embeddings |
|
self.num_attention_heads = num_attention_heads |
|
self.num_hidden_layers = num_hidden_layers |
|
self.pad_token_id = pad_token_id |
|
self.position_embedding_type = position_embedding_type |
|
self.transformers_version = transformers_version |
|
self.torch_dtype = torch_dtype |
|
self.type_vocab_size = type_vocab_size |
|
self.use_cache = use_cache |
|
self.vocab_size = vocab_size |
|
super().__init__(**kwargs) |
|
|