File size: 2,149 Bytes
88417bb dd49afa 88417bb dd49afa 0e8b8e9 dd49afa 88417bb dd49afa 88417bb dd49afa 88417bb dd49afa 88417bb dfc1a0b 88417bb dfc1a0b 88417bb dfc1a0b d9d1922 88417bb 5fe253f 88417bb 5fe253f dfc1a0b 88417bb 7ff4b64 88417bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
library_name: transformers
language:
- spa
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper Tiny Few Audios - vfranchis
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Tiny Few Audios - vfranchis
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Few audios 1.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3835
- Wer: 15.7143
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 100
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 1.5625 | 2.8571 | 10 | 1.4533 | 77.1429 |
| 0.6893 | 5.7143 | 20 | 0.7903 | 32.8571 |
| 0.1921 | 8.5714 | 30 | 0.5135 | 34.2857 |
| 0.0623 | 11.4286 | 40 | 0.4158 | 11.4286 |
| 0.0222 | 14.2857 | 50 | 0.3903 | 14.2857 |
| 0.0107 | 17.1429 | 60 | 0.3846 | 14.2857 |
| 0.0069 | 20.0 | 70 | 0.3847 | 15.7143 |
| 0.0055 | 22.8571 | 80 | 0.3842 | 15.7143 |
| 0.0046 | 25.7143 | 90 | 0.3836 | 15.7143 |
| 0.0044 | 28.5714 | 100 | 0.3835 | 15.7143 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|