brandonRivas
commited on
End of training
Browse files
README.md
CHANGED
@@ -23,10 +23,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
23 |
|
24 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the biobert_json dataset.
|
25 |
It achieves the following results on the evaluation set:
|
26 |
-
- Loss: 0.
|
27 |
-
- Precision: 0.
|
28 |
-
- Recall: 0.
|
29 |
-
- F1: 0.
|
30 |
- Accuracy: 0.9810
|
31 |
|
32 |
## Model description
|
@@ -59,113 +59,113 @@ The following hyperparameters were used during training:
|
|
59 |
|
60 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
61 |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
62 |
-
| 2.
|
63 |
-
| 1.
|
64 |
-
|
|
65 |
-
|
|
66 |
-
|
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
109 |
-
| 0.
|
110 |
-
| 0.
|
111 |
-
| 0.
|
112 |
-
| 0.
|
113 |
-
| 0.
|
114 |
-
| 0.
|
115 |
-
| 0.
|
116 |
-
| 0.
|
117 |
-
| 0.
|
118 |
-
| 0.
|
119 |
-
| 0.
|
120 |
-
| 0.
|
121 |
-
| 0.
|
122 |
-
| 0.
|
123 |
-
| 0.
|
124 |
-
| 0.
|
125 |
-
| 0.
|
126 |
-
| 0.
|
127 |
-
| 0.
|
128 |
-
| 0.
|
129 |
-
| 0.
|
130 |
-
| 0.
|
131 |
-
| 0.
|
132 |
-
| 0.
|
133 |
-
| 0.
|
134 |
-
| 0.
|
135 |
-
| 0.
|
136 |
-
| 0.
|
137 |
-
| 0.
|
138 |
-
| 0.
|
139 |
-
| 0.
|
140 |
-
| 0.
|
141 |
-
| 0.
|
142 |
-
| 0.
|
143 |
-
| 0.
|
144 |
-
| 0.
|
145 |
-
| 0.
|
146 |
-
| 0.
|
147 |
-
| 0.
|
148 |
-
| 0.
|
149 |
-
| 0.
|
150 |
-
| 0.
|
151 |
-
| 0.
|
152 |
-
| 0.
|
153 |
-
| 0.
|
154 |
-
| 0.
|
155 |
-
| 0.
|
156 |
-
| 0.
|
157 |
-
| 0.
|
158 |
-
| 0.
|
159 |
-
| 0.
|
160 |
-
| 0.
|
161 |
-
| 0.
|
162 |
-
| 0.
|
163 |
-
| 0.
|
164 |
-
| 0.
|
165 |
-
| 0.
|
166 |
-
| 0.
|
167 |
-
| 0.
|
168 |
-
| 0.
|
169 |
|
170 |
|
171 |
### Framework versions
|
|
|
23 |
|
24 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the biobert_json dataset.
|
25 |
It achieves the following results on the evaluation set:
|
26 |
+
- Loss: 0.0818
|
27 |
+
- Precision: 0.9372
|
28 |
+
- Recall: 0.9585
|
29 |
+
- F1: 0.9477
|
30 |
- Accuracy: 0.9810
|
31 |
|
32 |
## Model description
|
|
|
59 |
|
60 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
61 |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
62 |
+
| 2.0776 | 0.0654 | 20 | 1.3595 | 0.0 | 0.0 | 0.0 | 0.7180 |
|
63 |
+
| 1.4405 | 0.1307 | 40 | 1.3697 | 0.0 | 0.0 | 0.0 | 0.7180 |
|
64 |
+
| 1.4064 | 0.1961 | 60 | 1.3472 | 0.0 | 0.0 | 0.0 | 0.7180 |
|
65 |
+
| 1.3812 | 0.2614 | 80 | 1.2757 | 0.0 | 0.0 | 0.0 | 0.7180 |
|
66 |
+
| 1.1716 | 0.3268 | 100 | 0.6756 | 0.5890 | 0.4444 | 0.5066 | 0.8274 |
|
67 |
+
| 0.7189 | 0.3922 | 120 | 0.3631 | 0.7186 | 0.7394 | 0.7289 | 0.8974 |
|
68 |
+
| 0.4042 | 0.4575 | 140 | 0.2416 | 0.7440 | 0.8402 | 0.7892 | 0.9282 |
|
69 |
+
| 0.26 | 0.5229 | 160 | 0.1593 | 0.8510 | 0.8888 | 0.8695 | 0.9534 |
|
70 |
+
| 0.2169 | 0.5882 | 180 | 0.1403 | 0.8604 | 0.9057 | 0.8824 | 0.9569 |
|
71 |
+
| 0.1684 | 0.6536 | 200 | 0.1218 | 0.8735 | 0.9102 | 0.8915 | 0.9623 |
|
72 |
+
| 0.1719 | 0.7190 | 220 | 0.1043 | 0.8879 | 0.9337 | 0.9102 | 0.9688 |
|
73 |
+
| 0.1641 | 0.7843 | 240 | 0.1217 | 0.8751 | 0.9479 | 0.9101 | 0.9643 |
|
74 |
+
| 0.1358 | 0.8497 | 260 | 0.1017 | 0.9015 | 0.9369 | 0.9189 | 0.9710 |
|
75 |
+
| 0.1485 | 0.9150 | 280 | 0.1224 | 0.8774 | 0.9504 | 0.9124 | 0.9653 |
|
76 |
+
| 0.1477 | 0.9804 | 300 | 0.0945 | 0.9156 | 0.9391 | 0.9272 | 0.9730 |
|
77 |
+
| 0.1227 | 1.0458 | 320 | 0.0975 | 0.8964 | 0.9442 | 0.9197 | 0.9717 |
|
78 |
+
| 0.1076 | 1.1111 | 340 | 0.0860 | 0.9186 | 0.9470 | 0.9326 | 0.9748 |
|
79 |
+
| 0.1068 | 1.1765 | 360 | 0.0972 | 0.9042 | 0.9483 | 0.9257 | 0.9721 |
|
80 |
+
| 0.1089 | 1.2418 | 380 | 0.0927 | 0.9225 | 0.9283 | 0.9254 | 0.9729 |
|
81 |
+
| 0.1135 | 1.3072 | 400 | 0.0822 | 0.9263 | 0.9464 | 0.9362 | 0.9768 |
|
82 |
+
| 0.1121 | 1.3725 | 420 | 0.1034 | 0.8846 | 0.9224 | 0.9031 | 0.9678 |
|
83 |
+
| 0.1019 | 1.4379 | 440 | 0.0850 | 0.9233 | 0.9451 | 0.9341 | 0.9768 |
|
84 |
+
| 0.0908 | 1.5033 | 460 | 0.0733 | 0.9293 | 0.9525 | 0.9408 | 0.9783 |
|
85 |
+
| 0.1003 | 1.5686 | 480 | 0.0908 | 0.9119 | 0.9516 | 0.9314 | 0.9730 |
|
86 |
+
| 0.0922 | 1.6340 | 500 | 0.0872 | 0.9153 | 0.9543 | 0.9344 | 0.9758 |
|
87 |
+
| 0.0815 | 1.6993 | 520 | 0.0851 | 0.9183 | 0.9623 | 0.9398 | 0.9775 |
|
88 |
+
| 0.0931 | 1.7647 | 540 | 0.0837 | 0.9229 | 0.9455 | 0.9341 | 0.9775 |
|
89 |
+
| 0.0922 | 1.8301 | 560 | 0.0853 | 0.9149 | 0.9606 | 0.9372 | 0.9767 |
|
90 |
+
| 0.0953 | 1.8954 | 580 | 0.0899 | 0.9132 | 0.9612 | 0.9366 | 0.9753 |
|
91 |
+
| 0.0892 | 1.9608 | 600 | 0.0809 | 0.9230 | 0.9544 | 0.9384 | 0.9776 |
|
92 |
+
| 0.0772 | 2.0261 | 620 | 0.0822 | 0.9244 | 0.9580 | 0.9409 | 0.9775 |
|
93 |
+
| 0.0744 | 2.0915 | 640 | 0.0810 | 0.9225 | 0.9585 | 0.9401 | 0.9776 |
|
94 |
+
| 0.0558 | 2.1569 | 660 | 0.0758 | 0.9281 | 0.9581 | 0.9429 | 0.9795 |
|
95 |
+
| 0.0759 | 2.2222 | 680 | 0.0794 | 0.9244 | 0.9566 | 0.9402 | 0.9778 |
|
96 |
+
| 0.0778 | 2.2876 | 700 | 0.0914 | 0.9115 | 0.9527 | 0.9316 | 0.9752 |
|
97 |
+
| 0.0672 | 2.3529 | 720 | 0.0819 | 0.9285 | 0.9497 | 0.9390 | 0.9790 |
|
98 |
+
| 0.0708 | 2.4183 | 740 | 0.0823 | 0.9233 | 0.9537 | 0.9382 | 0.9760 |
|
99 |
+
| 0.0906 | 2.4837 | 760 | 0.0732 | 0.9317 | 0.9577 | 0.9445 | 0.9803 |
|
100 |
+
| 0.066 | 2.5490 | 780 | 0.0767 | 0.9319 | 0.9568 | 0.9442 | 0.9799 |
|
101 |
+
| 0.074 | 2.6144 | 800 | 0.0730 | 0.9359 | 0.9524 | 0.9441 | 0.9797 |
|
102 |
+
| 0.0636 | 2.6797 | 820 | 0.0720 | 0.9406 | 0.9536 | 0.9470 | 0.9808 |
|
103 |
+
| 0.0687 | 2.7451 | 840 | 0.0758 | 0.9294 | 0.9531 | 0.9411 | 0.9793 |
|
104 |
+
| 0.0611 | 2.8105 | 860 | 0.0777 | 0.9327 | 0.9607 | 0.9465 | 0.9803 |
|
105 |
+
| 0.0766 | 2.8758 | 880 | 0.0759 | 0.9239 | 0.9564 | 0.9399 | 0.9784 |
|
106 |
+
| 0.0625 | 2.9412 | 900 | 0.0814 | 0.9157 | 0.9593 | 0.9370 | 0.9775 |
|
107 |
+
| 0.0619 | 3.0065 | 920 | 0.0757 | 0.9332 | 0.9586 | 0.9457 | 0.9803 |
|
108 |
+
| 0.0482 | 3.0719 | 940 | 0.0733 | 0.9310 | 0.9593 | 0.9449 | 0.9812 |
|
109 |
+
| 0.0531 | 3.1373 | 960 | 0.0862 | 0.9258 | 0.9618 | 0.9435 | 0.9780 |
|
110 |
+
| 0.0507 | 3.2026 | 980 | 0.0733 | 0.9326 | 0.9561 | 0.9442 | 0.9803 |
|
111 |
+
| 0.0597 | 3.2680 | 1000 | 0.0758 | 0.9313 | 0.9562 | 0.9436 | 0.9793 |
|
112 |
+
| 0.0527 | 3.3333 | 1020 | 0.0765 | 0.9256 | 0.9533 | 0.9393 | 0.9790 |
|
113 |
+
| 0.0561 | 3.3987 | 1040 | 0.0854 | 0.9169 | 0.9643 | 0.9400 | 0.9775 |
|
114 |
+
| 0.0584 | 3.4641 | 1060 | 0.0802 | 0.9251 | 0.9612 | 0.9428 | 0.9792 |
|
115 |
+
| 0.053 | 3.5294 | 1080 | 0.0770 | 0.9259 | 0.9494 | 0.9375 | 0.9790 |
|
116 |
+
| 0.0483 | 3.5948 | 1100 | 0.0792 | 0.9306 | 0.9591 | 0.9446 | 0.9791 |
|
117 |
+
| 0.041 | 3.6601 | 1120 | 0.0763 | 0.9343 | 0.9509 | 0.9425 | 0.9802 |
|
118 |
+
| 0.0687 | 3.7255 | 1140 | 0.0719 | 0.9410 | 0.9627 | 0.9517 | 0.9819 |
|
119 |
+
| 0.051 | 3.7908 | 1160 | 0.0715 | 0.9385 | 0.9601 | 0.9492 | 0.9819 |
|
120 |
+
| 0.0666 | 3.8562 | 1180 | 0.0807 | 0.9251 | 0.9577 | 0.9411 | 0.9782 |
|
121 |
+
| 0.06 | 3.9216 | 1200 | 0.0838 | 0.9256 | 0.9551 | 0.9402 | 0.9778 |
|
122 |
+
| 0.0635 | 3.9869 | 1220 | 0.0751 | 0.9291 | 0.9610 | 0.9448 | 0.9804 |
|
123 |
+
| 0.0429 | 4.0523 | 1240 | 0.0755 | 0.9380 | 0.9593 | 0.9485 | 0.9816 |
|
124 |
+
| 0.0379 | 4.1176 | 1260 | 0.0750 | 0.9300 | 0.9589 | 0.9443 | 0.9808 |
|
125 |
+
| 0.0376 | 4.1830 | 1280 | 0.0735 | 0.9366 | 0.9603 | 0.9483 | 0.9818 |
|
126 |
+
| 0.0454 | 4.2484 | 1300 | 0.0737 | 0.9398 | 0.9549 | 0.9473 | 0.9808 |
|
127 |
+
| 0.0413 | 4.3137 | 1320 | 0.0729 | 0.9416 | 0.9506 | 0.9460 | 0.9807 |
|
128 |
+
| 0.0458 | 4.3791 | 1340 | 0.0713 | 0.9423 | 0.9585 | 0.9503 | 0.9822 |
|
129 |
+
| 0.0367 | 4.4444 | 1360 | 0.0759 | 0.9325 | 0.9603 | 0.9462 | 0.9812 |
|
130 |
+
| 0.0305 | 4.5098 | 1380 | 0.0814 | 0.9281 | 0.9611 | 0.9443 | 0.9802 |
|
131 |
+
| 0.0437 | 4.5752 | 1400 | 0.0842 | 0.9280 | 0.9512 | 0.9394 | 0.9790 |
|
132 |
+
| 0.0469 | 4.6405 | 1420 | 0.0799 | 0.9295 | 0.9592 | 0.9441 | 0.9795 |
|
133 |
+
| 0.04 | 4.7059 | 1440 | 0.0777 | 0.9359 | 0.9600 | 0.9478 | 0.9807 |
|
134 |
+
| 0.0462 | 4.7712 | 1460 | 0.0812 | 0.9312 | 0.9595 | 0.9452 | 0.9803 |
|
135 |
+
| 0.042 | 4.8366 | 1480 | 0.0764 | 0.9409 | 0.9542 | 0.9475 | 0.9810 |
|
136 |
+
| 0.0446 | 4.9020 | 1500 | 0.0767 | 0.9372 | 0.9625 | 0.9497 | 0.9812 |
|
137 |
+
| 0.0515 | 4.9673 | 1520 | 0.0793 | 0.9323 | 0.9552 | 0.9436 | 0.9800 |
|
138 |
+
| 0.0368 | 5.0327 | 1540 | 0.0802 | 0.9338 | 0.9601 | 0.9468 | 0.9806 |
|
139 |
+
| 0.0349 | 5.0980 | 1560 | 0.0781 | 0.9412 | 0.9599 | 0.9505 | 0.9816 |
|
140 |
+
| 0.0405 | 5.1634 | 1580 | 0.0773 | 0.9403 | 0.9616 | 0.9508 | 0.9822 |
|
141 |
+
| 0.0381 | 5.2288 | 1600 | 0.0835 | 0.9291 | 0.9577 | 0.9432 | 0.9795 |
|
142 |
+
| 0.0307 | 5.2941 | 1620 | 0.0772 | 0.9399 | 0.9579 | 0.9488 | 0.9815 |
|
143 |
+
| 0.0295 | 5.3595 | 1640 | 0.0787 | 0.9399 | 0.9595 | 0.9496 | 0.9815 |
|
144 |
+
| 0.0313 | 5.4248 | 1660 | 0.0787 | 0.9432 | 0.9560 | 0.9495 | 0.9821 |
|
145 |
+
| 0.0411 | 5.4902 | 1680 | 0.0848 | 0.9274 | 0.9512 | 0.9391 | 0.9790 |
|
146 |
+
| 0.0397 | 5.5556 | 1700 | 0.0784 | 0.9392 | 0.9604 | 0.9497 | 0.9813 |
|
147 |
+
| 0.0346 | 5.6209 | 1720 | 0.0780 | 0.9373 | 0.9570 | 0.9471 | 0.9811 |
|
148 |
+
| 0.0343 | 5.6863 | 1740 | 0.0746 | 0.9416 | 0.9554 | 0.9484 | 0.9815 |
|
149 |
+
| 0.0327 | 5.7516 | 1760 | 0.0842 | 0.9226 | 0.9512 | 0.9366 | 0.9785 |
|
150 |
+
| 0.0307 | 5.8170 | 1780 | 0.0783 | 0.9366 | 0.9594 | 0.9479 | 0.9815 |
|
151 |
+
| 0.0399 | 5.8824 | 1800 | 0.0802 | 0.9325 | 0.9577 | 0.9450 | 0.9802 |
|
152 |
+
| 0.0317 | 5.9477 | 1820 | 0.0767 | 0.9397 | 0.9603 | 0.9499 | 0.9818 |
|
153 |
+
| 0.033 | 6.0131 | 1840 | 0.0802 | 0.9336 | 0.9573 | 0.9453 | 0.9805 |
|
154 |
+
| 0.0289 | 6.0784 | 1860 | 0.0791 | 0.9370 | 0.9560 | 0.9464 | 0.9810 |
|
155 |
+
| 0.0275 | 6.1438 | 1880 | 0.0799 | 0.9316 | 0.9543 | 0.9428 | 0.9802 |
|
156 |
+
| 0.0222 | 6.2092 | 1900 | 0.0830 | 0.9296 | 0.9552 | 0.9423 | 0.9799 |
|
157 |
+
| 0.0329 | 6.2745 | 1920 | 0.0796 | 0.9382 | 0.9587 | 0.9483 | 0.9815 |
|
158 |
+
| 0.0281 | 6.3399 | 1940 | 0.0808 | 0.9349 | 0.9580 | 0.9463 | 0.9810 |
|
159 |
+
| 0.0281 | 6.4052 | 1960 | 0.0794 | 0.9370 | 0.9579 | 0.9473 | 0.9814 |
|
160 |
+
| 0.0231 | 6.4706 | 1980 | 0.0814 | 0.9332 | 0.9572 | 0.9450 | 0.9808 |
|
161 |
+
| 0.0251 | 6.5359 | 2000 | 0.0808 | 0.9360 | 0.9588 | 0.9473 | 0.9813 |
|
162 |
+
| 0.0294 | 6.6013 | 2020 | 0.0808 | 0.9368 | 0.9586 | 0.9476 | 0.9812 |
|
163 |
+
| 0.023 | 6.6667 | 2040 | 0.0825 | 0.9353 | 0.9581 | 0.9466 | 0.9807 |
|
164 |
+
| 0.0271 | 6.7320 | 2060 | 0.0811 | 0.9384 | 0.9597 | 0.9489 | 0.9814 |
|
165 |
+
| 0.0353 | 6.7974 | 2080 | 0.0803 | 0.9401 | 0.9601 | 0.9500 | 0.9818 |
|
166 |
+
| 0.0243 | 6.8627 | 2100 | 0.0814 | 0.9379 | 0.9581 | 0.9479 | 0.9810 |
|
167 |
+
| 0.0264 | 6.9281 | 2120 | 0.0821 | 0.9369 | 0.9583 | 0.9475 | 0.9809 |
|
168 |
+
| 0.0241 | 6.9935 | 2140 | 0.0818 | 0.9372 | 0.9585 | 0.9477 | 0.9810 |
|
169 |
|
170 |
|
171 |
### Framework versions
|