Brad Hayes
commited on
Commit
•
e13ae90
1
Parent(s):
be7f887
PPO Model v2
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +42 -26
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +2 -2
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 289.65 +/- 21.34
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd30cabcca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd30cabcd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd30cabcdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd30cabce50>", "_build": "<function ActorCriticPolicy._build at 0x7fd30cabcee0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd30cabcf70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd30cac0040>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd30cac00d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd30cac0160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd30cac01f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd30cac0280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd318ca40c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "num_timesteps": 2048000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651816762.9016528, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVfwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjE8vaG9tZS9icmFkLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAACiajzhYJa6LtCwus1PljNm6r06Rlg8MwAAgD8AAIA/Zg+NvIUribmXA0G56fpSuQeWhbthZ504AACAPwAAgD9mtH28j6J8uoqWiTy8hpC2XJsKO14EhrUAAIA/AACAP5rRPrv2VAm6UlJvuQCaUrNfF1C7amWKOAAAgD8AAIA/gEAfvXF1Azom8+E740iJOK/8wLvqb1e5AACAPwAAgD/AoLa9celzOraxlTwEVVw8xNuUu4qHcb0AAAAAAAAAAI0mlb0paFe6SmmNPL3pBz3o6E66jmPnvQAAgD8AAIA/QFgPPrpleD5U4K6+VyzAvinJLr6eEDq9AAAAAAAAAAAzZ2e9FBaFunM7ZT1HZZc8lykmu/l8gz0AAIA/AACAP2YR0bzDuSG6/kqvOzyhurVOBOS4H6PHugAAgD8AAIA/TQtfvcMdJLof/ys9W1R4vB6pbLsF5Fi9AAAAAAAAgD/N/xS+SAnzut0QFTy6RO84XVSjO0RNybkAAIA/AACAP5qNMj0fbb250G9IO5HdNzURduW7Q7NrugAAgD8AAIA/mhlBPBS40LpPLIY8XqckvWEDjLsn+w++AAAAAAAAgD8AbgO8hdP1uRIPOjsb1L815kGFussTvjQAAIA/AACAP5ogJr1cIyK67/Qvui63ojVqMF+6njxQOQAAgD8AAIA/mrSgvClgOLqpx0E7EQiNNs4WPbt1hl66AACAPwAAgD9mppY7SMGAujpluDtjh5S26Yp0uwAIjLUAAIA/AACAP9Ay+L6Kcti97bCou1HMp7g4enK9LdvYOAAAgD8AAIA/zQlBPY/SOrqVLOa8D3/vvMJpGTvXKQA9AAAAAAAAAADNnhu8e4yPukg0YzwOBAo1WXcdO+KK8jMAAIA/AACAP4CNv70UoJS6CHDyO0yX0Dg5RYI6kRzBNwAAgD8AAIA/M2uVvFII5LsmNoI9WScZvbN3Ljz61CM9AACAPwAAgD8zk366w/V4ul4GwTp9dzI1D+F2OyoEJzQAAIA/AACAPxo1L72uIYO6MkNAOh7MBzbao6m6ovNduQAAgD8AAIA/zYI8vFJQ/LkCI1c72aQ5uJnoD7qdd3S6AACAPwAAgD9NkSW9ewLgupvmsDwbOsu8G+mrO/JksT0AAIA/AACAPwPsVb6h8fU+PuY9PYtwAb+ulAS+za+UvAAAAAAAAAAAKjiePkZFEz+Gfi++4l0fvwnHGj5d8wW+AAAAAAAAAAAzczQ8XA88uoaIO7zGlFa1FWYMu01jxDQAAIA/AACAPxroDj1ch3u6ShtIu7zkcDm5ypq7eqzZuAAAgD8AAIA/AHTQPB87sTrAZzU8nregO9/yRLu7wI28AACAPwAAAAAA6My74TiOugS6pTv7l744J8ytOXpWRLoAAIA/AACAP2YjZL32VB66GNNLPS0cqzXWF4O6UxKnNAAAAAAAAIA/M0sEPY+SaLq0ZTk6d5azM/cx5bqifVG5AACAPwAAgD8zPwe89qgqurYp1Du+ddw09aMdO2b26zMAAIA/AACAPzN9Mzxcz2y4tsK5u4xLnjzfzM+6YXG4uwAAgD8AAIA/Zj51vK4hg7rpGKU5wvIrtnpQSbs+9L+4AACAPwAAgD+a5Wm9SG2YukhD1jwcZsk1cggduxx9vjQAAIA/AACAP4CoSj2kcBm5c/0wPKNMHzV5bIe7n8ckNAAAgD8AAIA/mgsvvmSrKT7yEZU+gW9QvhnfMz1A1Pk9AAAAAAAAAADNlrm8UgjqubPpuDvCZ8s2qQuku7lGyDUAAIA/AACAP82QPLz2UDG6Kws6PKcLsrge0hU7FOqmtwAAgD8AAIA/ZmRNPSmUdro6Uao7lToWtvaCLrunEMO6AACAPwAAgD+aXHE9w3kKulXf9DrFbGY2nBHhOpwrDboAAIA/AACAP83I2DtI/Y+6r74jPFrigjsa2ea6S2QDPAAAgD8AAIA/zV6QPMPxAbqmw127Q1JrtfuXV7tTINg0AACAPwAAgD/NlCG7VUumPhX4VbyDVeS+tmsJvWIJoz0AAAAAAAAAAM1MtD17Stq6CYCDOwxhozyupkg7keWMvQAAgD8AAIA/GuoKPR8l1bnskAO8k58wtdhcFLuSsaM0AACAPwAAgD8z5nW9hcPJuSKU+jukf4s2mQS9OuEFiDUAAIA/AACAP5qagbwU9KC6n2Cpuew1vTXYESC6mh3COAAAgD8AAIA/GjpWPex5i7mWFI477xseNVFs1brWdqe6AACAPwAAgD/N/ks8uEb2uRJ7xruCjUI4e+qpOq4nhToAAIA/AACAP2ZeXz32CCi8JHgIvQG90DwZlIk9hE6qvQAAgD8AAIA/zdx+PI/WY7r+N5A6rlPaNSP/ErpC/qe5AACAPwAAgD8A/4Q94f6RuiZ+K7qrIhey+qIJu+bXQzkAAIA/AACAP80zIz0UBpu6cWu/OvddoTUicRu70BzduQAAgD8AAIA/mgeiva7hhrra4n+75FMGt4YjOzvipZM6AAAAAAAAgD8aGJ+9j+4YuhZHlrumCeE8psdfOToK9zkAAIA/AACAPzP9LL2u44q6YZGCN58DRbfKvzK7NsFUtgAAgD8AAIA/mh0EvCkEXroXTYQ5vdP8NSuuhDv8/5e4AACAPwAAgD+AGG29j9osulH/hbnMv6i1u1juuquHmjgAAIA/AACAP8CUxb3h9LO6q7Rsu6uaRDVsPOg5X7mGOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInIwqwzjKY0CUhpRSlIwBbJRN6AOMAXSUR0DAYy4txuKodX2UKGgGaAloD0MI98jmqnlsZUCUhpRSlGgVTegDaBZHQMBjTOWjXWh1fZQoaAZoCWgPQwjHf4EgQItkQJSGlFKUaBVN6ANoFkdAwGShsRg7YHV9lChoBmgJaA9DCFQ3F3/bZmRAlIaUUpRoFU3oA2gWR0DAZSMh/y5JdX2UKGgGaAloD0MIVz82yY8BZ0CUhpRSlGgVTegDaBZHQMBlR0RODap1fZQoaAZoCWgPQwi3C811GlZkQJSGlFKUaBVN6ANoFkdAwGW6kO7QLXV9lChoBmgJaA9DCKyL22iA22JAlIaUUpRoFU3oA2gWR0DAZe1WCEpRdX2UKGgGaAloD0MIz02bcZrHZ0CUhpRSlGgVTegDaBZHQMBmmb4Ju2t1fZQoaAZoCWgPQwgfSN45lPJlQJSGlFKUaBVN6ANoFkdAwGai9yLhrHV9lChoBmgJaA9DCN9PjZfummFAlIaUUpRoFU3oA2gWR0DAZq/S6UaAdX2UKGgGaAloD0MIdhw/VJpxZ0CUhpRSlGgVTegDaBZHQMBm1FV1fVt1fZQoaAZoCWgPQwiPUZ55uQBkQJSGlFKUaBVN6ANoFkdAwGcjDuSfUXV9lChoBmgJaA9DCAucbAN3YWNAlIaUUpRoFU3oA2gWR0DAZzxyfcvedX2UKGgGaAloD0MIpYP1f46UZECUhpRSlGgVTegDaBZHQMBnVEIX0oV1fZQoaAZoCWgPQwiLxAQ1fMxmQJSGlFKUaBVN6ANoFkdAwGeOVD8cdnV9lChoBmgJaA9DCKrVV1cF/GVAlIaUUpRoFU3oA2gWR0DAZ9JztCzDdX2UKGgGaAloD0MI8x/Sb98iZECUhpRSlGgVTegDaBZHQMBn/uMMqjJ1fZQoaAZoCWgPQwhMGqN1VI5jQJSGlFKUaBVN6ANoFkdAwJm6d92HL3V9lChoBmgJaA9DCO30g7pIw2JAlIaUUpRoFU3oA2gWR0DAmcFaUzKtdX2UKGgGaAloD0MIhnZOs8CxYECUhpRSlGgVTegDaBZHQMCZ/BWo3rF1fZQoaAZoCWgPQwjdJAaBlVphQJSGlFKUaBVN6ANoFkdAwJoKO9WZJHV9lChoBmgJaA9DCMO4G0TrPmFAlIaUUpRoFU3oA2gWR0DAmhm0/nnudX2UKGgGaAloD0MI66wW2GOaZkCUhpRSlGgVTegDaBZHQMCaXKJl8PZ1fZQoaAZoCWgPQwhIaqFkctBgQJSGlFKUaBVN6ANoFkdAwJppXPJJXnV9lChoBmgJaA9DCDS9xFgmg2dAlIaUUpRoFU3oA2gWR0DAmnaTjebedX2UKGgGaAloD0MIhZSfVHuVY0CUhpRSlGgVTegDaBZHQMCauiIk7fZ1fZQoaAZoCWgPQwhGlPYGX15jQJSGlFKUaBVN6ANoFkdAwJsSYxcmjXV9lChoBmgJaA9DCPgzvFmDSGJAlIaUUpRoFU3oA2gWR0DAmxY/xDsudX2UKGgGaAloD0MIyorh6gDBY0CUhpRSlGgVTegDaBZHQMCbQpGWldl1fZQoaAZoCWgPQwjL12X4T3BeQJSGlFKUaBVN6ANoFkdAwJu59BKL9HV9lChoBmgJaA9DCKhzRSmhdmFAlIaUUpRoFU3oA2gWR0DAm+HmT1TSdX2UKGgGaAloD0MIBoAqbtxiXECUhpRSlGgVTegDaBZHQMCcCsKCxu91fZQoaAZoCWgPQwh7wac5ebVcQJSGlFKUaBVN6ANoFkdAwJxVhm5DqnV9lChoBmgJaA9DCIS3ByGg8mJAlIaUUpRoFU3oA2gWR0DAnYGuLaVVdX2UKGgGaAloD0MIms5OBsc2ZECUhpRSlGgVTegDaBZHQMCdsnrY5DJ1fZQoaAZoCWgPQwhrgxPRr/NkQJSGlFKUaBVN6ANoFkdAwJ23ZVXFLnV9lChoBmgJaA9DCI22KonsrmNAlIaUUpRoFU3oA2gWR0DAnhb7yhBadX2UKGgGaAloD0MIXi9NEeC1ZECUhpRSlGgVTegDaBZHQMCeZQzch1V1fZQoaAZoCWgPQwjKNQUyu1ppQJSGlFKUaBVN6ANoFkdAwJ50/cnE23V9lChoBmgJaA9DCKH2WztR9WNAlIaUUpRoFU3oA2gWR0DAnqireZXudX2UKGgGaAloD0MIyTocXaVAZ0CUhpRSlGgVTegDaBZHQMCetoSL61t1fZQoaAZoCWgPQwh9y5wuC45jQJSGlFKUaBVN6ANoFkdAwJ7M3CsOonV9lChoBmgJaA9DCOpBQSlaUGNAlIaUUpRoFU3oA2gWR0DAnz2waBI4dX2UKGgGaAloD0MI1QRR94E1ZUCUhpRSlGgVTegDaBZHQMCfUbzkIX11fZQoaAZoCWgPQwiGAODYs2ZmQJSGlFKUaBVN6ANoFkdAwJ+MPDHfdnV9lChoBmgJaA9DCLIqwk1G2mVAlIaUUpRoFU3oA2gWR0DAn9koUi6hdX2UKGgGaAloD0MIUKkSZW+TYkCUhpRSlGgVTegDaBZHQMCgArXDm8x1fZQoaAZoCWgPQwjh62td6iFkQJSGlFKUaBVN6ANoFkdAwKBKfzSThnV9lChoBmgJaA9DCNu+R/11MWFAlIaUUpRoFU3oA2gWR0DAoKVVHWjHdX2UKGgGaAloD0MIMj7MXjbtY0CUhpRSlGgVTegDaBZHQMCgvDSgGr11fZQoaAZoCWgPQwhQHEC/77lkQJSGlFKUaBVN6ANoFkdAwKEBfrrxAnV9lChoBmgJaA9DCBHg9C7eLWNAlIaUUpRoFU3oA2gWR0DAoQw4p+c6dX2UKGgGaAloD0MI1NFxNTL2ZkCUhpRSlGgVTegDaBZHQMChQ4keIVN1fZQoaAZoCWgPQwjkLVc/tqxjQJSGlFKUaBVN6ANoFkdAwKGBTlT3qXV9lChoBmgJaA9DCDfiyW5mE2NAlIaUUpRoFU3oA2gWR0DAod6XSjQBdX2UKGgGaAloD0MIoiQk0raUZECUhpRSlGgVTegDaBZHQMCiBJosZpB1fZQoaAZoCWgPQwgZVBuciHRnQJSGlFKUaBVN6ANoFkdAwKIxKL8763V9lChoBmgJaA9DCGpMiLmk02FAlIaUUpRoFU3oA2gWR0DAokOtW+49dX2UKGgGaAloD0MI8BMH0O+/Z0CUhpRSlGgVTegDaBZHQMCioaab4Jx1fZQoaAZoCWgPQwjGpL+XwqNkQJSGlFKUaBVN6ANoFkdAwKKsZBLPEHV9lChoBmgJaA9DCLTMIhTbdmNAlIaUUpRoFU3oA2gWR0DAoreqWC2+dX2UKGgGaAloD0MIGt1B7MypZECUhpRSlGgVTegDaBZHQMCi5jCxeLN1fZQoaAZoCWgPQwgArfnxl1ZkQJSGlFKUaBVN6ANoFkdAwKL2rhisn3V9lChoBmgJaA9DCKtcqPxr4GFAlIaUUpRoFU3oA2gWR0DAowxS5y2hdX2UKGgGaAloD0MI9fHQdzdvYUCUhpRSlGgVTegDaBZHQMCjLsOwxFl1fZQoaAZoCWgPQwhiSiTRyw1aQJSGlFKUaBVN6ANoFkdAwKNMxASnL3V9lChoBmgJaA9DCGkZqfdUl2NAlIaUUpRoFU3oA2gWR0DApJi7qY7adX2UKGgGaAloD0MIpnwIqkYpTECUhpRSlGgVS3VoFkdAwKSkptJnQXV9lChoBmgJaA9DCIAPXru0yV9AlIaUUpRoFU3oA2gWR0DApQ55Rjz7dX2UKGgGaAloD0MI73N8tDiwWECUhpRSlGgVTegDaBZHQMClMjqv/zd1fZQoaAZoCWgPQwiFP8ObtRVjQJSGlFKUaBVN6ANoFkdAwKWe93bEgnV9lChoBmgJaA9DCPcGX5hMi2JAlIaUUpRoFU3oA2gWR0DApdHt4RmLdX2UKGgGaAloD0MIEk92M6OrZ0CUhpRSlGgVTegDaBZHQMCme5X2dup1fZQoaAZoCWgPQwjFckurIX5dQJSGlFKUaBVN6ANoFkdAwKaEZF5OanV9lChoBmgJaA9DCK38MhgjmGVAlIaUUpRoFU3oA2gWR0DAppCuKXOXdX2UKGgGaAloD0MI+dwJ9l+dZkCUhpRSlGgVTegDaBZHQMCmtRXGOuJ1fZQoaAZoCWgPQwiuKCUEqztgQJSGlFKUaBVN6ANoFkdAwKcH+JgssnV9lChoBmgJaA9DCAKbc/BMlmJAlIaUUpRoFU3oA2gWR0DApyB5Z8rqdX2UKGgGaAloD0MIPQ6D+aucZUCUhpRSlGgVTegDaBZHQMCnOKJdjXp1fZQoaAZoCWgPQwg4vvbMEhpkQJSGlFKUaBVN6ANoFkdAwKd0YwZflnV9lChoBmgJaA9DCLfwvFRs+WRAlIaUUpRoFU3oA2gWR0DAp7jSsr/bdX2UKGgGaAloD0MIrIvbaIC4YECUhpRSlGgVTegDaBZHQMCn5pU5uIh1fZQoaAZoCWgPQwg3ww34/FJFQJSGlFKUaBVLemgWR0DAqG7KFIuodX2UKGgGaAloD0MIhe0nY/wnZECUhpRSlGgVTegDaBZHQMCowAT7EYR1fZQoaAZoCWgPQwhIxJRIIjRmQJSGlFKUaBVN6ANoFkdAwKjHCMPz4HV9lChoBmgJaA9DCHvXoC+9tl5AlIaUUpRoFU3oA2gWR0DAqQM+5e7ddX2UKGgGaAloD0MIVFOSdbi+Y0CUhpRSlGgVTegDaBZHQMCpEmXXyy51fZQoaAZoCWgPQwgD7Q4pho5jQJSGlFKUaBVN6ANoFkdAwKkh6zmfXnV9lChoBmgJaA9DCBHF5A2w32BAlIaUUpRoFU3oA2gWR0DAqWQVO9FndX2UKGgGaAloD0MIDkktlEwcZUCUhpRSlGgVTegDaBZHQMCpcQQ176Z1fZQoaAZoCWgPQwjvx+2Xz9xgQJSGlFKUaBVN6ANoFkdAwKl+hlDneXV9lChoBmgJaA9DCOykvizt+GJAlIaUUpRoFU3oA2gWR0DAqcUcENe/dX2UKGgGaAloD0MIfuIA+v3VYECUhpRSlGgVTegDaBZHQMCqHe5OJtV1fZQoaAZoCWgPQwgeigJ9IjZgQJSGlFKUaBVN6ANoFkdAwKoiQfZElXV9lChoBmgJaA9DCAlQU8tWpmNAlIaUUpRoFU3oA2gWR0DAqlBbdJrddX2UKGgGaAloD0MI3c8pyM/2RkCUhpRSlGgVS3RoFkdAwKp3AEdNnHV9lChoBmgJaA9DCNMTlnjA5GZAlIaUUpRoFU3oA2gWR0DAqskb3oLYdX2UKGgGaAloD0MIsmfPZWqUZECUhpRSlGgVTegDaBZHQMCq8dy925h1fZQoaAZoCWgPQwhYxoZudhtmQJSGlFKUaBVN6ANoFkdAwKsaL0jC53V9lChoBmgJaA9DCMjRHFn5hWBAlIaUUpRoFU3oA2gWR0DAq2O8qWkadWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 375, "n_steps": 1280, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.05, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 15, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVfwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjE8vaG9tZS9icmFkLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.60.1-microsoft-standard-WSL2-x86_64-with-glibc2.29 #1 SMP Wed Aug 25 23:20:18 UTC 2021", "Python": "3.8.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.0", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1d072b64c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1d072b6550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1d072b65e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1d072b6670>", "_build": "<function ActorCriticPolicy._build at 0x7f1d072b6700>", "forward": "<function ActorCriticPolicy.forward at 0x7f1d072b6790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1d072b6820>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1d072b68b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1d072b6940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1d072b69d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1d072b6a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1d19845ed0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVaAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJRdlH2UKIwCcGmUXZQoSyBLEGWMAnZmlF2UKEsgSxBldWF1Lg==", "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>", "net_arch": [{"pi": [32, 16], "vf": [32, 16]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 5079040, "_total_timesteps": 5055904, "_num_timesteps_at_start": 2555904, "seed": null, "action_noise": null, "start_time": 1651876384.2080295, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVfwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjE8vaG9tZS9icmFkLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAGYGM7vC6bM/+IwGvliUBr6AhH061hFdvAAAAAAAAAAAAKorvVqiOD4DUBk+HI0dv4XjZrtG8Ro+AAAAAAAAAACzM6u9lXOdP/uKXL5GxjK/SAk2vp0L870AAAAAAAAAALN/BT1SRf6766q5vB+Cqjx7E2y9bmWNPQAAgD8AAIA/DUAMPrvlij8nwqc+v8Aev5Udjj53UJo9AAAAAAAAAABaHJk9+JeWP8BKvj7qLTy/dPD9PY7ddD4AAAAAAAAAAIAaDD4RjkI/hZ9iPeWxQ79FIl8+ChKEvQAAAAAAAAAAACpIvY++eLrLUlo2PsIjMdsIRruDq4S1AACAPwAAgD/tlCW+H3SZPhI5nT7flhK/RDFSvnxpvD4AAAAAAAAAAGanM71cDRU+vaddPbO6CL/nbEy9hSO2PQAAAAAAAAAAZtK7PHt0lbr8I7e4d9gGsoRlHbvdEtE3AACAPwAAgD9D11i+/k8+P0wnhL1kzSi//DjFvj2v4zwAAAAAAAAAAM0GFzzhOKC6NlI4s2wCLzBcYcu6J/7KMwAAgD8AAIA/ADtxPSkIDLqiuei7kPj9NGaS+DvWrW+0AACAPwAAgD/NYKc8XDdEuk/GJzRrPVgvKsiauyw2jLMAAIA/AACAPzMtED0Ki64/+usFPvUx2b4Of+09VsGGPQAAAAAAAAAAzQQpO8MtTbpSnDA4AHVDMmZqd7v9OU63AACAPwAAgD9m9Ve9znmVvPe3mT1qE6M8XHTZPIf3RT0AAIA/AACAP1rxGb7Q3eo+UIVdPUooIb/RZIW+oGS4PQAAAAAAAAAAfU9ovuasdD94wXC+FdAzv8/y8L7N8Oy8AAAAAAAAAABGUwi+eh0VP+okD7xhuCC/43+ZvgLekTwAAAAAAAAAAJA7rD7VBpI/uAZuPIBaxL7J6SA/8nf0vQAAAAAAAAAATe6cvWQRtT80CrO+2sCEvsqrKr4utD6+AAAAAAAAAABmgde8FNqEum176rIH5BCw6tQmuxEnsjMAAIA/AACAP4C5Ij41FgM/EJKIvuzdLb8P3RE+Y0pFvgAAAAAAAAAAmveovMNBXbprr2s2OuWSMQDyBDr1No+1AACAPwAAgD+a6XA8aCerP447AT7Rhty+RwAAPbt4mT0AAAAAAAAAAPPRsz2/KjU/YUEkvcLWVL+yKwo+pYrZvQAAAAAAAAAAzQrivBRuoro2y4Y7Qk2juDTq5brNhri3AACAPwAAgD8zFc+9PB+ZP/Z3Ob5NCFu/c3M8vuRYAr4AAAAAAAAAAK1Ygj6jpJg/MKKVPi9p0r6FNQQ/8F52PQAAAAAAAAAAgMftPap2FD4S2o++AtP5vtCarzwe4Ae+AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004576036253852944, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfA4sR8hKckCUhpRSlIwBbJRLo4wBdJRHQMkxjjwH7gt1fZQoaAZoCWgPQwjfGAKA4xNxQJSGlFKUaBVLqmgWR0DJMZLh73PBdX2UKGgGaAloD0MIBhA+lKj0cECUhpRSlGgVS6RoFkdAyTGVYNAkcHV9lChoBmgJaA9DCCfcK/OWFXJAlIaUUpRoFUuNaBZHQMkxn78FY+11fZQoaAZoCWgPQwg3NdB8zj09QJSGlFKUaBVLaGgWR0DJMaHa11GLdX2UKGgGaAloD0MIAK5kxwbuc0CUhpRSlGgVS89oFkdAyTGhwMH8j3V9lChoBmgJaA9DCCgLX1+rKnFAlIaUUpRoFUudaBZHQMkxon3+MqB1fZQoaAZoCWgPQwjYYUz6uy1xQJSGlFKUaBVLjWgWR0DJMaZxvNu+dX2UKGgGaAloD0MIi96pgHslckCUhpRSlGgVS69oFkdAyTGorf+CLHV9lChoBmgJaA9DCPT+P07YmXFAlIaUUpRoFUuCaBZHQMkxuundfsx1fZQoaAZoCWgPQwgz/n3GBa9xQJSGlFKUaBVLsGgWR0DJMbw+nqFAdX2UKGgGaAloD0MIJ0wYzcoScECUhpRSlGgVS5hoFkdAyTG8uM+/xnV9lChoBmgJaA9DCNTvwtbsuXJAlIaUUpRoFUvLaBZHQMkxvkyk9EF1fZQoaAZoCWgPQwjBHhMpjbBxQJSGlFKUaBVLo2gWR0DJMb8Od5IIdX2UKGgGaAloD0MItRt9zAffckCUhpRSlGgVS8VoFkdAyTG/yMDOknV9lChoBmgJaA9DCHkDzHxHRXFAlIaUUpRoFUu3aBZHQMkxxkpZwGZ1fZQoaAZoCWgPQwgVAySawB5xQJSGlFKUaBVLp2gWR0DJMcqvX9R8dX2UKGgGaAloD0MIFqdaC3OlcECUhpRSlGgVS5loFkdAyTHSQ0XP7nV9lChoBmgJaA9DCPZiKCea0nBAlIaUUpRoFUugaBZHQMkx1Ryn1nN1fZQoaAZoCWgPQwg8pYP1f3VxQJSGlFKUaBVLumgWR0DJMdyADq4ZdX2UKGgGaAloD0MIbXL4pNPZc0CUhpRSlGgVS9hoFkdAyTHdzhgmZ3V9lChoBmgJaA9DCEvMs5JWPXJAlIaUUpRoFUu7aBZHQMkx3+9SMtN1fZQoaAZoCWgPQwgyrU1j+35zQJSGlFKUaBVLs2gWR0DJMeFC3PRidX2UKGgGaAloD0MIBRkBFU54c0CUhpRSlGgVS9doFkdAyTHh6iTMaHV9lChoBmgJaA9DCF70FaQZe3BAlIaUUpRoFUuTaBZHQMkx6M72crl1fZQoaAZoCWgPQwjOVIhH4ot0QJSGlFKUaBVL2mgWR0DJMepL9MsZdX2UKGgGaAloD0MIgH9KlWhMckCUhpRSlGgVS81oFkdAyTHtW1c+q3V9lChoBmgJaA9DCHQHsTMFSXBAlIaUUpRoFUu1aBZHQMkx8l/pdKN1fZQoaAZoCWgPQwgJGF3enOBxQJSGlFKUaBVLyWgWR0DJMfalFc6edX2UKGgGaAloD0MICHJQwsw+dECUhpRSlGgVS69oFkdAyTH3y5qdpnV9lChoBmgJaA9DCJSJWwUx63FAlIaUUpRoFUuMaBZHQMkx/FFMIu51fZQoaAZoCWgPQwjlszwPrvRxQJSGlFKUaBVLoWgWR0DJMf3UQTVUdX2UKGgGaAloD0MIlpLlJFQ6cUCUhpRSlGgVS61oFkdAyTH+piI+GHV9lChoBmgJaA9DCGjQ0D+Bt3FAlIaUUpRoFUu4aBZHQMkyAnmq5sl1fZQoaAZoCWgPQwhjQswllaZyQJSGlFKUaBVLnmgWR0DJMgcx20RfdX2UKGgGaAloD0MIllrvN9rQcUCUhpRSlGgVS7xoFkdAyTIIF/x2CHV9lChoBmgJaA9DCAoS290DXXFAlIaUUpRoFUufaBZHQMkyDsVLzwt1fZQoaAZoCWgPQwhMT1jigWlyQJSGlFKUaBVLwmgWR0DJMhE4cWCVdX2UKGgGaAloD0MIF2U2yGT1cECUhpRSlGgVS4poFkdAyTIXLqUu+XV9lChoBmgJaA9DCJDZWfRO2HFAlIaUUpRoFUuyaBZHQMkyFzDXOGF1fZQoaAZoCWgPQwjz4y8tKoNxQJSGlFKUaBVLtGgWR0DJMhzYmLLqdX2UKGgGaAloD0MIQiRDjq1BcECUhpRSlGgVS5hoFkdAyTIfZ/Tb4HV9lChoBmgJaA9DCHyeP23UJ3NAlIaUUpRoFUvCaBZHQMkyH2lEZzh1fZQoaAZoCWgPQwiqDU5EvyhvQJSGlFKUaBVLnGgWR0DJMjKpkwvhdX2UKGgGaAloD0MIjILg8e1LckCUhpRSlGgVS7ZoFkdAyTI2NpdrwnV9lChoBmgJaA9DCMhCdAjc+3FAlIaUUpRoFUu4aBZHQMkyOwjt5Ut1fZQoaAZoCWgPQwjikA2ki4FyQJSGlFKUaBVLvmgWR0DJMj6ojv/jdX2UKGgGaAloD0MIcsXFUXnGcECUhpRSlGgVS6FoFkdAyTI/pAUtZnV9lChoBmgJaA9DCCR7hJqhUXJAlIaUUpRoFUu0aBZHQMkyP3Dm8ul1fZQoaAZoCWgPQwgVyVcCKfpyQJSGlFKUaBVLwGgWR0DJMj9lAeJYdX2UKGgGaAloD0MIUWaDTPJZckCUhpRSlGgVS7VoFkdAyTJQQpWmxnV9lChoBmgJaA9DCJpAEYsYqG9AlIaUUpRoFUuTaBZHQMkyUkvK2a51fZQoaAZoCWgPQwiwNzEk5w5yQJSGlFKUaBVLq2gWR0DJMlI7DEWJdX2UKGgGaAloD0MIx/DYzyKHcUCUhpRSlGgVS6loFkdAyTJTBciW3XV9lChoBmgJaA9DCKw2/696dnBAlIaUUpRoFUulaBZHQMkyWb7CSA91fZQoaAZoCWgPQwgQzNHjN1NzQJSGlFKUaBVLtGgWR0DJMlvgvUSadX2UKGgGaAloD0MIS+guiTOvc0CUhpRSlGgVS7RoFkdAyTJcinHeanV9lChoBmgJaA9DCONve4IEi3BAlIaUUpRoFUuVaBZHQMkyYzhHbyp1fZQoaAZoCWgPQwj3BfTC3T1wQJSGlFKUaBVLoWgWR0DJMmWPBBRidX2UKGgGaAloD0MI6MByhIySc0CUhpRSlGgVS81oFkdAyTJoJIlMRHV9lChoBmgJaA9DCAg+BivOmXBAlIaUUpRoFUuvaBZHQMkyandO6/Z1fZQoaAZoCWgPQwiTyamd4eNvQJSGlFKUaBVLoWgWR0DJMm0L0BfbdX2UKGgGaAloD0MI0ZUIVH8pc0CUhpRSlGgVS8hoFkdAyTJylgtvoHV9lChoBmgJaA9DCJZ7gVmhWXJAlIaUUpRoFUu6aBZHQMkydwXQ+ll1fZQoaAZoCWgPQwgA4q5ehVJyQJSGlFKUaBVLtGgWR0DJMnoePq9odX2UKGgGaAloD0MILGNDNzvpckCUhpRSlGgVS7RoFkdAyTJ+ZDRc/3V9lChoBmgJaA9DCCNKe4MvAXFAlIaUUpRoFUutaBZHQMkyf+LNwBJ1fZQoaAZoCWgPQwhbzTrj+8VvQJSGlFKUaBVLnGgWR0DJMoG6/ZdwdX2UKGgGaAloD0MI+Uz2z9O4cUCUhpRSlGgVS7NoFkdAyTKC6vJRwnV9lChoBmgJaA9DCCocQSpF23JAlIaUUpRoFUupaBZHQMkyhAa3qiZ1fZQoaAZoCWgPQwi1xMpoJGZyQJSGlFKUaBVLmGgWR0DJMob1qWTpdX2UKGgGaAloD0MIUkZcAJoUckCUhpRSlGgVS7NoFkdAyTKL4lhPTHV9lChoBmgJaA9DCNMzvcRYREdAlIaUUpRoFUtfaBZHQMkykV/Ue+51fZQoaAZoCWgPQwjcZb/utKdyQJSGlFKUaBVLq2gWR0DJMpO8brC4dX2UKGgGaAloD0MI007N5Ybkc0CUhpRSlGgVS7VoFkdAyTKX9AHE/HV9lChoBmgJaA9DCOLJbma05XJAlIaUUpRoFUu+aBZHQMkymIfSx7l1fZQoaAZoCWgPQwgcBvNXSEZyQJSGlFKUaBVLiGgWR0DJMpoEZBLPdX2UKGgGaAloD0MIFsH/VjLtcECUhpRSlGgVS6loFkdAyTKwcUdq+XV9lChoBmgJaA9DCGMJa2Ms33FAlIaUUpRoFUu8aBZHQMkysgfdRBN1fZQoaAZoCWgPQwiocASpVNtwQJSGlFKUaBVLr2gWR0DJMrTrVvuPdX2UKGgGaAloD0MImX/0TZrOckCUhpRSlGgVS8BoFkdAyTK32wFC9nV9lChoBmgJaA9DCPG4qBbR3nJAlIaUUpRoFUuPaBZHQMkyvBRyfcx1fZQoaAZoCWgPQwgS+MPPv6FzQJSGlFKUaBVLy2gWR0DJMsQM2FWXdX2UKGgGaAloD0MIw7rx7gjzc0CUhpRSlGgVS8poFkdAyTLHwLmZE3V9lChoBmgJaA9DCJlJ1At+TXBAlIaUUpRoFUulaBZHQMkyyQ2MsH11fZQoaAZoCWgPQwhtNlZiHslyQJSGlFKUaBVLmmgWR0DJMsty1eBydX2UKGgGaAloD0MIiPVGrfCJcUCUhpRSlGgVS7poFkdAyTLRFLnLaHV9lChoBmgJaA9DCMWrrG0K625AlIaUUpRoFUuMaBZHQMky0dsBQvZ1fZQoaAZoCWgPQwj5ugz/qa5yQJSGlFKUaBVLwmgWR0DJMtPozN2UdX2UKGgGaAloD0MI8P0N2mtkckCUhpRSlGgVS8ZoFkdAyTLYvGIbfnV9lChoBmgJaA9DCMxFfCfmNXRAlIaUUpRoFUu4aBZHQMky2Mw+MZR1fZQoaAZoCWgPQwhq+uyAq3ByQJSGlFKUaBVLpGgWR0DJMtoK8cuKdX2UKGgGaAloD0MI7WXbaWs7c0CUhpRSlGgVS6NoFkdAyTLcBGx2S3V9lChoBmgJaA9DCKlr7X2qUHJAlIaUUpRoFUu6aBZHQMky43u/k/91fZQoaAZoCWgPQwjH1ciuNBZwQJSGlFKUaBVLmGgWR0DJMuctI066dX2UKGgGaAloD0MIJxWNtb9jckCUhpRSlGgVS8BoFkdAyTLpnjABUHV9lChoBmgJaA9DCPoMqDfjJ3FAlIaUUpRoFUuqaBZHQMky7gq3Eyd1fZQoaAZoCWgPQwi1/wHWKpZxQJSGlFKUaBVLp2gWR0DJMvBZEDyOdX2UKGgGaAloD0MINjy9Uhblb0CUhpRSlGgVS6doFkdAyTL0189fTnV9lChoBmgJaA9DCG+5+rGJ4HFAlIaUUpRoFUuvaBZHQMky+y6tknV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1240, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVfwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjE8vaG9tZS9icmFkLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.60.1-microsoft-standard-WSL2-x86_64-with-glibc2.29 #1 SMP Wed Aug 25 23:20:18 UTC 2021", "Python": "3.8.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.0", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a72ca2d1ab13cbeea5db607779b97b5525d028bc0cb762cb79976813c01a258e
|
3 |
+
size 48111
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,22 +4,38 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
-
"policy_kwargs": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
"observation_space": {
|
24 |
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
@@ -41,13 +57,13 @@
|
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
44 |
-
"n_envs":
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
-
"_num_timesteps_at_start":
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,34 +72,34 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
-
":serialized:": "
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
-
"n_steps":
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
82 |
-
"ent_coef": 0.
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
"batch_size": 64,
|
86 |
-
"n_epochs":
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
":serialized:": "gAWVfwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjE8vaG9tZS9icmFkLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f1d072b64c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1d072b6550>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1d072b65e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1d072b6670>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f1d072b6700>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f1d072b6790>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1d072b6820>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f1d072b68b0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1d072b6940>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1d072b69d0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1d072b6a60>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f1d19845ed0>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gAWVaAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJRdlH2UKIwCcGmUXZQoSyBLEGWMAnZmlF2UKEsgSxBldWF1Lg==",
|
25 |
+
"activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
|
26 |
+
"net_arch": [
|
27 |
+
{
|
28 |
+
"pi": [
|
29 |
+
32,
|
30 |
+
16
|
31 |
+
],
|
32 |
+
"vf": [
|
33 |
+
32,
|
34 |
+
16
|
35 |
+
]
|
36 |
+
}
|
37 |
+
]
|
38 |
+
},
|
39 |
"observation_space": {
|
40 |
":type:": "<class 'gym.spaces.box.Box'>",
|
41 |
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
|
|
57 |
"dtype": "int64",
|
58 |
"_np_random": null
|
59 |
},
|
60 |
+
"n_envs": 32,
|
61 |
+
"num_timesteps": 5079040,
|
62 |
+
"_total_timesteps": 5055904,
|
63 |
+
"_num_timesteps_at_start": 2555904,
|
64 |
"seed": null,
|
65 |
"action_noise": null,
|
66 |
+
"start_time": 1651876384.2080295,
|
67 |
"learning_rate": 0.0003,
|
68 |
"tensorboard_log": null,
|
69 |
"lr_schedule": {
|
|
|
72 |
},
|
73 |
"_last_obs": {
|
74 |
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAGYGM7vC6bM/+IwGvliUBr6AhH061hFdvAAAAAAAAAAAAKorvVqiOD4DUBk+HI0dv4XjZrtG8Ro+AAAAAAAAAACzM6u9lXOdP/uKXL5GxjK/SAk2vp0L870AAAAAAAAAALN/BT1SRf6766q5vB+Cqjx7E2y9bmWNPQAAgD8AAIA/DUAMPrvlij8nwqc+v8Aev5Udjj53UJo9AAAAAAAAAABaHJk9+JeWP8BKvj7qLTy/dPD9PY7ddD4AAAAAAAAAAIAaDD4RjkI/hZ9iPeWxQ79FIl8+ChKEvQAAAAAAAAAAACpIvY++eLrLUlo2PsIjMdsIRruDq4S1AACAPwAAgD/tlCW+H3SZPhI5nT7flhK/RDFSvnxpvD4AAAAAAAAAAGanM71cDRU+vaddPbO6CL/nbEy9hSO2PQAAAAAAAAAAZtK7PHt0lbr8I7e4d9gGsoRlHbvdEtE3AACAPwAAgD9D11i+/k8+P0wnhL1kzSi//DjFvj2v4zwAAAAAAAAAAM0GFzzhOKC6NlI4s2wCLzBcYcu6J/7KMwAAgD8AAIA/ADtxPSkIDLqiuei7kPj9NGaS+DvWrW+0AACAPwAAgD/NYKc8XDdEuk/GJzRrPVgvKsiauyw2jLMAAIA/AACAPzMtED0Ki64/+usFPvUx2b4Of+09VsGGPQAAAAAAAAAAzQQpO8MtTbpSnDA4AHVDMmZqd7v9OU63AACAPwAAgD9m9Ve9znmVvPe3mT1qE6M8XHTZPIf3RT0AAIA/AACAP1rxGb7Q3eo+UIVdPUooIb/RZIW+oGS4PQAAAAAAAAAAfU9ovuasdD94wXC+FdAzv8/y8L7N8Oy8AAAAAAAAAABGUwi+eh0VP+okD7xhuCC/43+ZvgLekTwAAAAAAAAAAJA7rD7VBpI/uAZuPIBaxL7J6SA/8nf0vQAAAAAAAAAATe6cvWQRtT80CrO+2sCEvsqrKr4utD6+AAAAAAAAAABmgde8FNqEum176rIH5BCw6tQmuxEnsjMAAIA/AACAP4C5Ij41FgM/EJKIvuzdLb8P3RE+Y0pFvgAAAAAAAAAAmveovMNBXbprr2s2OuWSMQDyBDr1No+1AACAPwAAgD+a6XA8aCerP447AT7Rhty+RwAAPbt4mT0AAAAAAAAAAPPRsz2/KjU/YUEkvcLWVL+yKwo+pYrZvQAAAAAAAAAAzQrivBRuoro2y4Y7Qk2juDTq5brNhri3AACAPwAAgD8zFc+9PB+ZP/Z3Ob5NCFu/c3M8vuRYAr4AAAAAAAAAAK1Ygj6jpJg/MKKVPi9p0r6FNQQ/8F52PQAAAAAAAAAAgMftPap2FD4S2o++AtP5vtCarzwe4Ae+AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
|
76 |
},
|
77 |
"_last_episode_starts": {
|
78 |
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
|
80 |
},
|
81 |
"_last_original_obs": null,
|
82 |
"_episode_num": 0,
|
83 |
"use_sde": false,
|
84 |
"sde_sample_freq": -1,
|
85 |
+
"_current_progress_remaining": -0.004576036253852944,
|
86 |
"ep_info_buffer": {
|
87 |
":type:": "<class 'collections.deque'>",
|
88 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfA4sR8hKckCUhpRSlIwBbJRLo4wBdJRHQMkxjjwH7gt1fZQoaAZoCWgPQwjfGAKA4xNxQJSGlFKUaBVLqmgWR0DJMZLh73PBdX2UKGgGaAloD0MIBhA+lKj0cECUhpRSlGgVS6RoFkdAyTGVYNAkcHV9lChoBmgJaA9DCCfcK/OWFXJAlIaUUpRoFUuNaBZHQMkxn78FY+11fZQoaAZoCWgPQwg3NdB8zj09QJSGlFKUaBVLaGgWR0DJMaHa11GLdX2UKGgGaAloD0MIAK5kxwbuc0CUhpRSlGgVS89oFkdAyTGhwMH8j3V9lChoBmgJaA9DCCgLX1+rKnFAlIaUUpRoFUudaBZHQMkxon3+MqB1fZQoaAZoCWgPQwjYYUz6uy1xQJSGlFKUaBVLjWgWR0DJMaZxvNu+dX2UKGgGaAloD0MIi96pgHslckCUhpRSlGgVS69oFkdAyTGorf+CLHV9lChoBmgJaA9DCPT+P07YmXFAlIaUUpRoFUuCaBZHQMkxuundfsx1fZQoaAZoCWgPQwgz/n3GBa9xQJSGlFKUaBVLsGgWR0DJMbw+nqFAdX2UKGgGaAloD0MIJ0wYzcoScECUhpRSlGgVS5hoFkdAyTG8uM+/xnV9lChoBmgJaA9DCNTvwtbsuXJAlIaUUpRoFUvLaBZHQMkxvkyk9EF1fZQoaAZoCWgPQwjBHhMpjbBxQJSGlFKUaBVLo2gWR0DJMb8Od5IIdX2UKGgGaAloD0MItRt9zAffckCUhpRSlGgVS8VoFkdAyTG/yMDOknV9lChoBmgJaA9DCHkDzHxHRXFAlIaUUpRoFUu3aBZHQMkxxkpZwGZ1fZQoaAZoCWgPQwgVAySawB5xQJSGlFKUaBVLp2gWR0DJMcqvX9R8dX2UKGgGaAloD0MIFqdaC3OlcECUhpRSlGgVS5loFkdAyTHSQ0XP7nV9lChoBmgJaA9DCPZiKCea0nBAlIaUUpRoFUugaBZHQMkx1Ryn1nN1fZQoaAZoCWgPQwg8pYP1f3VxQJSGlFKUaBVLumgWR0DJMdyADq4ZdX2UKGgGaAloD0MIbXL4pNPZc0CUhpRSlGgVS9hoFkdAyTHdzhgmZ3V9lChoBmgJaA9DCEvMs5JWPXJAlIaUUpRoFUu7aBZHQMkx3+9SMtN1fZQoaAZoCWgPQwgyrU1j+35zQJSGlFKUaBVLs2gWR0DJMeFC3PRidX2UKGgGaAloD0MIBRkBFU54c0CUhpRSlGgVS9doFkdAyTHh6iTMaHV9lChoBmgJaA9DCF70FaQZe3BAlIaUUpRoFUuTaBZHQMkx6M72crl1fZQoaAZoCWgPQwjOVIhH4ot0QJSGlFKUaBVL2mgWR0DJMepL9MsZdX2UKGgGaAloD0MIgH9KlWhMckCUhpRSlGgVS81oFkdAyTHtW1c+q3V9lChoBmgJaA9DCHQHsTMFSXBAlIaUUpRoFUu1aBZHQMkx8l/pdKN1fZQoaAZoCWgPQwgJGF3enOBxQJSGlFKUaBVLyWgWR0DJMfalFc6edX2UKGgGaAloD0MICHJQwsw+dECUhpRSlGgVS69oFkdAyTH3y5qdpnV9lChoBmgJaA9DCJSJWwUx63FAlIaUUpRoFUuMaBZHQMkx/FFMIu51fZQoaAZoCWgPQwjlszwPrvRxQJSGlFKUaBVLoWgWR0DJMf3UQTVUdX2UKGgGaAloD0MIlpLlJFQ6cUCUhpRSlGgVS61oFkdAyTH+piI+GHV9lChoBmgJaA9DCGjQ0D+Bt3FAlIaUUpRoFUu4aBZHQMkyAnmq5sl1fZQoaAZoCWgPQwhjQswllaZyQJSGlFKUaBVLnmgWR0DJMgcx20RfdX2UKGgGaAloD0MIllrvN9rQcUCUhpRSlGgVS7xoFkdAyTIIF/x2CHV9lChoBmgJaA9DCAoS290DXXFAlIaUUpRoFUufaBZHQMkyDsVLzwt1fZQoaAZoCWgPQwhMT1jigWlyQJSGlFKUaBVLwmgWR0DJMhE4cWCVdX2UKGgGaAloD0MIF2U2yGT1cECUhpRSlGgVS4poFkdAyTIXLqUu+XV9lChoBmgJaA9DCJDZWfRO2HFAlIaUUpRoFUuyaBZHQMkyFzDXOGF1fZQoaAZoCWgPQwjz4y8tKoNxQJSGlFKUaBVLtGgWR0DJMhzYmLLqdX2UKGgGaAloD0MIQiRDjq1BcECUhpRSlGgVS5hoFkdAyTIfZ/Tb4HV9lChoBmgJaA9DCHyeP23UJ3NAlIaUUpRoFUvCaBZHQMkyH2lEZzh1fZQoaAZoCWgPQwiqDU5EvyhvQJSGlFKUaBVLnGgWR0DJMjKpkwvhdX2UKGgGaAloD0MIjILg8e1LckCUhpRSlGgVS7ZoFkdAyTI2NpdrwnV9lChoBmgJaA9DCMhCdAjc+3FAlIaUUpRoFUu4aBZHQMkyOwjt5Ut1fZQoaAZoCWgPQwjikA2ki4FyQJSGlFKUaBVLvmgWR0DJMj6ojv/jdX2UKGgGaAloD0MIcsXFUXnGcECUhpRSlGgVS6FoFkdAyTI/pAUtZnV9lChoBmgJaA9DCCR7hJqhUXJAlIaUUpRoFUu0aBZHQMkyP3Dm8ul1fZQoaAZoCWgPQwgVyVcCKfpyQJSGlFKUaBVLwGgWR0DJMj9lAeJYdX2UKGgGaAloD0MIUWaDTPJZckCUhpRSlGgVS7VoFkdAyTJQQpWmxnV9lChoBmgJaA9DCJpAEYsYqG9AlIaUUpRoFUuTaBZHQMkyUkvK2a51fZQoaAZoCWgPQwiwNzEk5w5yQJSGlFKUaBVLq2gWR0DJMlI7DEWJdX2UKGgGaAloD0MIx/DYzyKHcUCUhpRSlGgVS6loFkdAyTJTBciW3XV9lChoBmgJaA9DCKw2/696dnBAlIaUUpRoFUulaBZHQMkyWb7CSA91fZQoaAZoCWgPQwgQzNHjN1NzQJSGlFKUaBVLtGgWR0DJMlvgvUSadX2UKGgGaAloD0MIS+guiTOvc0CUhpRSlGgVS7RoFkdAyTJcinHeanV9lChoBmgJaA9DCONve4IEi3BAlIaUUpRoFUuVaBZHQMkyYzhHbyp1fZQoaAZoCWgPQwj3BfTC3T1wQJSGlFKUaBVLoWgWR0DJMmWPBBRidX2UKGgGaAloD0MI6MByhIySc0CUhpRSlGgVS81oFkdAyTJoJIlMRHV9lChoBmgJaA9DCAg+BivOmXBAlIaUUpRoFUuvaBZHQMkyandO6/Z1fZQoaAZoCWgPQwiTyamd4eNvQJSGlFKUaBVLoWgWR0DJMm0L0BfbdX2UKGgGaAloD0MI0ZUIVH8pc0CUhpRSlGgVS8hoFkdAyTJylgtvoHV9lChoBmgJaA9DCJZ7gVmhWXJAlIaUUpRoFUu6aBZHQMkydwXQ+ll1fZQoaAZoCWgPQwgA4q5ehVJyQJSGlFKUaBVLtGgWR0DJMnoePq9odX2UKGgGaAloD0MILGNDNzvpckCUhpRSlGgVS7RoFkdAyTJ+ZDRc/3V9lChoBmgJaA9DCCNKe4MvAXFAlIaUUpRoFUutaBZHQMkyf+LNwBJ1fZQoaAZoCWgPQwhbzTrj+8VvQJSGlFKUaBVLnGgWR0DJMoG6/ZdwdX2UKGgGaAloD0MI+Uz2z9O4cUCUhpRSlGgVS7NoFkdAyTKC6vJRwnV9lChoBmgJaA9DCCocQSpF23JAlIaUUpRoFUupaBZHQMkyhAa3qiZ1fZQoaAZoCWgPQwi1xMpoJGZyQJSGlFKUaBVLmGgWR0DJMob1qWTpdX2UKGgGaAloD0MIUkZcAJoUckCUhpRSlGgVS7NoFkdAyTKL4lhPTHV9lChoBmgJaA9DCNMzvcRYREdAlIaUUpRoFUtfaBZHQMkykV/Ue+51fZQoaAZoCWgPQwjcZb/utKdyQJSGlFKUaBVLq2gWR0DJMpO8brC4dX2UKGgGaAloD0MI007N5Ybkc0CUhpRSlGgVS7VoFkdAyTKX9AHE/HV9lChoBmgJaA9DCOLJbma05XJAlIaUUpRoFUu+aBZHQMkymIfSx7l1fZQoaAZoCWgPQwgcBvNXSEZyQJSGlFKUaBVLiGgWR0DJMpoEZBLPdX2UKGgGaAloD0MIFsH/VjLtcECUhpRSlGgVS6loFkdAyTKwcUdq+XV9lChoBmgJaA9DCGMJa2Ms33FAlIaUUpRoFUu8aBZHQMkysgfdRBN1fZQoaAZoCWgPQwiocASpVNtwQJSGlFKUaBVLr2gWR0DJMrTrVvuPdX2UKGgGaAloD0MImX/0TZrOckCUhpRSlGgVS8BoFkdAyTK32wFC9nV9lChoBmgJaA9DCPG4qBbR3nJAlIaUUpRoFUuPaBZHQMkyvBRyfcx1fZQoaAZoCWgPQwgS+MPPv6FzQJSGlFKUaBVLy2gWR0DJMsQM2FWXdX2UKGgGaAloD0MIw7rx7gjzc0CUhpRSlGgVS8poFkdAyTLHwLmZE3V9lChoBmgJaA9DCJlJ1At+TXBAlIaUUpRoFUulaBZHQMkyyQ2MsH11fZQoaAZoCWgPQwhtNlZiHslyQJSGlFKUaBVLmmgWR0DJMsty1eBydX2UKGgGaAloD0MIiPVGrfCJcUCUhpRSlGgVS7poFkdAyTLRFLnLaHV9lChoBmgJaA9DCMWrrG0K625AlIaUUpRoFUuMaBZHQMky0dsBQvZ1fZQoaAZoCWgPQwj5ugz/qa5yQJSGlFKUaBVLwmgWR0DJMtPozN2UdX2UKGgGaAloD0MI8P0N2mtkckCUhpRSlGgVS8ZoFkdAyTLYvGIbfnV9lChoBmgJaA9DCMxFfCfmNXRAlIaUUpRoFUu4aBZHQMky2Mw+MZR1fZQoaAZoCWgPQwhq+uyAq3ByQJSGlFKUaBVLpGgWR0DJMtoK8cuKdX2UKGgGaAloD0MI7WXbaWs7c0CUhpRSlGgVS6NoFkdAyTLcBGx2S3V9lChoBmgJaA9DCKlr7X2qUHJAlIaUUpRoFUu6aBZHQMky43u/k/91fZQoaAZoCWgPQwjH1ciuNBZwQJSGlFKUaBVLmGgWR0DJMuctI066dX2UKGgGaAloD0MIJxWNtb9jckCUhpRSlGgVS8BoFkdAyTLpnjABUHV9lChoBmgJaA9DCPoMqDfjJ3FAlIaUUpRoFUuqaBZHQMky7gq3Eyd1fZQoaAZoCWgPQwi1/wHWKpZxQJSGlFKUaBVLp2gWR0DJMvBZEDyOdX2UKGgGaAloD0MINjy9Uhblb0CUhpRSlGgVS6doFkdAyTL0189fTnV9lChoBmgJaA9DCG+5+rGJ4HFAlIaUUpRoFUuvaBZHQMky+y6tknV1ZS4="
|
89 |
},
|
90 |
"ep_success_buffer": {
|
91 |
":type:": "<class 'collections.deque'>",
|
92 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
93 |
},
|
94 |
+
"_n_updates": 1240,
|
95 |
+
"n_steps": 1024,
|
96 |
"gamma": 0.999,
|
97 |
"gae_lambda": 0.98,
|
98 |
+
"ent_coef": 0.01,
|
99 |
"vf_coef": 0.5,
|
100 |
"max_grad_norm": 0.5,
|
101 |
"batch_size": 64,
|
102 |
+
"n_epochs": 8,
|
103 |
"clip_range": {
|
104 |
":type:": "<class 'function'>",
|
105 |
":serialized:": "gAWVfwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjE8vaG9tZS9icmFkLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32803e715986d2149c738a2a717405f3830be97da0aa89c9c03dc8f65883a17a
|
3 |
+
size 20253
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0fa7f685e2b930b8ab042c98adf268ec87097b92fdd3b429577dba81d2b3db05
|
3 |
+
size 10881
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99c3a48be6e3ac2e2f05ed8ff44c43c8b869ad6bbded159b268221fb4d3dd2dc
|
3 |
+
size 178989
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 289.65316468618937, "std_reward": 21.33569383877523, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T21:35:59.176125"}
|