deep-rl-week1-ppo / config.json
Brad Hayes
PPO Model
a5491ad
raw
history blame
16.3 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd30cabcca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd30cabcd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd30cabcdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd30cabce50>", "_build": "<function ActorCriticPolicy._build at 0x7fd30cabcee0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd30cabcf70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd30cac0040>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd30cac00d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd30cac0160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd30cac01f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd30cac0280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd318ca40c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "num_timesteps": 2048000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651816762.9016528, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVfwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjE8vaG9tZS9icmFkLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAACiajzhYJa6LtCwus1PljNm6r06Rlg8MwAAgD8AAIA/Zg+NvIUribmXA0G56fpSuQeWhbthZ504AACAPwAAgD9mtH28j6J8uoqWiTy8hpC2XJsKO14EhrUAAIA/AACAP5rRPrv2VAm6UlJvuQCaUrNfF1C7amWKOAAAgD8AAIA/gEAfvXF1Azom8+E740iJOK/8wLvqb1e5AACAPwAAgD/AoLa9celzOraxlTwEVVw8xNuUu4qHcb0AAAAAAAAAAI0mlb0paFe6SmmNPL3pBz3o6E66jmPnvQAAgD8AAIA/QFgPPrpleD5U4K6+VyzAvinJLr6eEDq9AAAAAAAAAAAzZ2e9FBaFunM7ZT1HZZc8lykmu/l8gz0AAIA/AACAP2YR0bzDuSG6/kqvOzyhurVOBOS4H6PHugAAgD8AAIA/TQtfvcMdJLof/ys9W1R4vB6pbLsF5Fi9AAAAAAAAgD/N/xS+SAnzut0QFTy6RO84XVSjO0RNybkAAIA/AACAP5qNMj0fbb250G9IO5HdNzURduW7Q7NrugAAgD8AAIA/mhlBPBS40LpPLIY8XqckvWEDjLsn+w++AAAAAAAAgD8AbgO8hdP1uRIPOjsb1L815kGFussTvjQAAIA/AACAP5ogJr1cIyK67/Qvui63ojVqMF+6njxQOQAAgD8AAIA/mrSgvClgOLqpx0E7EQiNNs4WPbt1hl66AACAPwAAgD9mppY7SMGAujpluDtjh5S26Yp0uwAIjLUAAIA/AACAP9Ay+L6Kcti97bCou1HMp7g4enK9LdvYOAAAgD8AAIA/zQlBPY/SOrqVLOa8D3/vvMJpGTvXKQA9AAAAAAAAAADNnhu8e4yPukg0YzwOBAo1WXcdO+KK8jMAAIA/AACAP4CNv70UoJS6CHDyO0yX0Dg5RYI6kRzBNwAAgD8AAIA/M2uVvFII5LsmNoI9WScZvbN3Ljz61CM9AACAPwAAgD8zk366w/V4ul4GwTp9dzI1D+F2OyoEJzQAAIA/AACAPxo1L72uIYO6MkNAOh7MBzbao6m6ovNduQAAgD8AAIA/zYI8vFJQ/LkCI1c72aQ5uJnoD7qdd3S6AACAPwAAgD9NkSW9ewLgupvmsDwbOsu8G+mrO/JksT0AAIA/AACAPwPsVb6h8fU+PuY9PYtwAb+ulAS+za+UvAAAAAAAAAAAKjiePkZFEz+Gfi++4l0fvwnHGj5d8wW+AAAAAAAAAAAzczQ8XA88uoaIO7zGlFa1FWYMu01jxDQAAIA/AACAPxroDj1ch3u6ShtIu7zkcDm5ypq7eqzZuAAAgD8AAIA/AHTQPB87sTrAZzU8nregO9/yRLu7wI28AACAPwAAAAAA6My74TiOugS6pTv7l744J8ytOXpWRLoAAIA/AACAP2YjZL32VB66GNNLPS0cqzXWF4O6UxKnNAAAAAAAAIA/M0sEPY+SaLq0ZTk6d5azM/cx5bqifVG5AACAPwAAgD8zPwe89qgqurYp1Du+ddw09aMdO2b26zMAAIA/AACAPzN9Mzxcz2y4tsK5u4xLnjzfzM+6YXG4uwAAgD8AAIA/Zj51vK4hg7rpGKU5wvIrtnpQSbs+9L+4AACAPwAAgD+a5Wm9SG2YukhD1jwcZsk1cggduxx9vjQAAIA/AACAP4CoSj2kcBm5c/0wPKNMHzV5bIe7n8ckNAAAgD8AAIA/mgsvvmSrKT7yEZU+gW9QvhnfMz1A1Pk9AAAAAAAAAADNlrm8UgjqubPpuDvCZ8s2qQuku7lGyDUAAIA/AACAP82QPLz2UDG6Kws6PKcLsrge0hU7FOqmtwAAgD8AAIA/ZmRNPSmUdro6Uao7lToWtvaCLrunEMO6AACAPwAAgD+aXHE9w3kKulXf9DrFbGY2nBHhOpwrDboAAIA/AACAP83I2DtI/Y+6r74jPFrigjsa2ea6S2QDPAAAgD8AAIA/zV6QPMPxAbqmw127Q1JrtfuXV7tTINg0AACAPwAAgD/NlCG7VUumPhX4VbyDVeS+tmsJvWIJoz0AAAAAAAAAAM1MtD17Stq6CYCDOwxhozyupkg7keWMvQAAgD8AAIA/GuoKPR8l1bnskAO8k58wtdhcFLuSsaM0AACAPwAAgD8z5nW9hcPJuSKU+jukf4s2mQS9OuEFiDUAAIA/AACAP5qagbwU9KC6n2Cpuew1vTXYESC6mh3COAAAgD8AAIA/GjpWPex5i7mWFI477xseNVFs1brWdqe6AACAPwAAgD/N/ks8uEb2uRJ7xruCjUI4e+qpOq4nhToAAIA/AACAP2ZeXz32CCi8JHgIvQG90DwZlIk9hE6qvQAAgD8AAIA/zdx+PI/WY7r+N5A6rlPaNSP/ErpC/qe5AACAPwAAgD8A/4Q94f6RuiZ+K7qrIhey+qIJu+bXQzkAAIA/AACAP80zIz0UBpu6cWu/OvddoTUicRu70BzduQAAgD8AAIA/mgeiva7hhrra4n+75FMGt4YjOzvipZM6AAAAAAAAgD8aGJ+9j+4YuhZHlrumCeE8psdfOToK9zkAAIA/AACAPzP9LL2u44q6YZGCN58DRbfKvzK7NsFUtgAAgD8AAIA/mh0EvCkEXroXTYQ5vdP8NSuuhDv8/5e4AACAPwAAgD+AGG29j9osulH/hbnMv6i1u1juuquHmjgAAIA/AACAP8CUxb3h9LO6q7Rsu6uaRDVsPOg5X7mGOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInIwqwzjKY0CUhpRSlIwBbJRN6AOMAXSUR0DAYy4txuKodX2UKGgGaAloD0MI98jmqnlsZUCUhpRSlGgVTegDaBZHQMBjTOWjXWh1fZQoaAZoCWgPQwjHf4EgQItkQJSGlFKUaBVN6ANoFkdAwGShsRg7YHV9lChoBmgJaA9DCFQ3F3/bZmRAlIaUUpRoFU3oA2gWR0DAZSMh/y5JdX2UKGgGaAloD0MIVz82yY8BZ0CUhpRSlGgVTegDaBZHQMBlR0RODap1fZQoaAZoCWgPQwi3C811GlZkQJSGlFKUaBVN6ANoFkdAwGW6kO7QLXV9lChoBmgJaA9DCKyL22iA22JAlIaUUpRoFU3oA2gWR0DAZe1WCEpRdX2UKGgGaAloD0MIz02bcZrHZ0CUhpRSlGgVTegDaBZHQMBmmb4Ju2t1fZQoaAZoCWgPQwgfSN45lPJlQJSGlFKUaBVN6ANoFkdAwGai9yLhrHV9lChoBmgJaA9DCN9PjZfummFAlIaUUpRoFU3oA2gWR0DAZq/S6UaAdX2UKGgGaAloD0MIdhw/VJpxZ0CUhpRSlGgVTegDaBZHQMBm1FV1fVt1fZQoaAZoCWgPQwiPUZ55uQBkQJSGlFKUaBVN6ANoFkdAwGcjDuSfUXV9lChoBmgJaA9DCAucbAN3YWNAlIaUUpRoFU3oA2gWR0DAZzxyfcvedX2UKGgGaAloD0MIpYP1f46UZECUhpRSlGgVTegDaBZHQMBnVEIX0oV1fZQoaAZoCWgPQwiLxAQ1fMxmQJSGlFKUaBVN6ANoFkdAwGeOVD8cdnV9lChoBmgJaA9DCKrVV1cF/GVAlIaUUpRoFU3oA2gWR0DAZ9JztCzDdX2UKGgGaAloD0MI8x/Sb98iZECUhpRSlGgVTegDaBZHQMBn/uMMqjJ1fZQoaAZoCWgPQwhMGqN1VI5jQJSGlFKUaBVN6ANoFkdAwJm6d92HL3V9lChoBmgJaA9DCO30g7pIw2JAlIaUUpRoFU3oA2gWR0DAmcFaUzKtdX2UKGgGaAloD0MIhnZOs8CxYECUhpRSlGgVTegDaBZHQMCZ/BWo3rF1fZQoaAZoCWgPQwjdJAaBlVphQJSGlFKUaBVN6ANoFkdAwJoKO9WZJHV9lChoBmgJaA9DCMO4G0TrPmFAlIaUUpRoFU3oA2gWR0DAmhm0/nnudX2UKGgGaAloD0MI66wW2GOaZkCUhpRSlGgVTegDaBZHQMCaXKJl8PZ1fZQoaAZoCWgPQwhIaqFkctBgQJSGlFKUaBVN6ANoFkdAwJppXPJJXnV9lChoBmgJaA9DCDS9xFgmg2dAlIaUUpRoFU3oA2gWR0DAmnaTjebedX2UKGgGaAloD0MIhZSfVHuVY0CUhpRSlGgVTegDaBZHQMCauiIk7fZ1fZQoaAZoCWgPQwhGlPYGX15jQJSGlFKUaBVN6ANoFkdAwJsSYxcmjXV9lChoBmgJaA9DCPgzvFmDSGJAlIaUUpRoFU3oA2gWR0DAmxY/xDsudX2UKGgGaAloD0MIyorh6gDBY0CUhpRSlGgVTegDaBZHQMCbQpGWldl1fZQoaAZoCWgPQwjL12X4T3BeQJSGlFKUaBVN6ANoFkdAwJu59BKL9HV9lChoBmgJaA9DCKhzRSmhdmFAlIaUUpRoFU3oA2gWR0DAm+HmT1TSdX2UKGgGaAloD0MIBoAqbtxiXECUhpRSlGgVTegDaBZHQMCcCsKCxu91fZQoaAZoCWgPQwh7wac5ebVcQJSGlFKUaBVN6ANoFkdAwJxVhm5DqnV9lChoBmgJaA9DCIS3ByGg8mJAlIaUUpRoFU3oA2gWR0DAnYGuLaVVdX2UKGgGaAloD0MIms5OBsc2ZECUhpRSlGgVTegDaBZHQMCdsnrY5DJ1fZQoaAZoCWgPQwhrgxPRr/NkQJSGlFKUaBVN6ANoFkdAwJ23ZVXFLnV9lChoBmgJaA9DCI22KonsrmNAlIaUUpRoFU3oA2gWR0DAnhb7yhBadX2UKGgGaAloD0MIXi9NEeC1ZECUhpRSlGgVTegDaBZHQMCeZQzch1V1fZQoaAZoCWgPQwjKNQUyu1ppQJSGlFKUaBVN6ANoFkdAwJ50/cnE23V9lChoBmgJaA9DCKH2WztR9WNAlIaUUpRoFU3oA2gWR0DAnqireZXudX2UKGgGaAloD0MIyTocXaVAZ0CUhpRSlGgVTegDaBZHQMCetoSL61t1fZQoaAZoCWgPQwh9y5wuC45jQJSGlFKUaBVN6ANoFkdAwJ7M3CsOonV9lChoBmgJaA9DCOpBQSlaUGNAlIaUUpRoFU3oA2gWR0DAnz2waBI4dX2UKGgGaAloD0MI1QRR94E1ZUCUhpRSlGgVTegDaBZHQMCfUbzkIX11fZQoaAZoCWgPQwiGAODYs2ZmQJSGlFKUaBVN6ANoFkdAwJ+MPDHfdnV9lChoBmgJaA9DCLIqwk1G2mVAlIaUUpRoFU3oA2gWR0DAn9koUi6hdX2UKGgGaAloD0MIUKkSZW+TYkCUhpRSlGgVTegDaBZHQMCgArXDm8x1fZQoaAZoCWgPQwjh62td6iFkQJSGlFKUaBVN6ANoFkdAwKBKfzSThnV9lChoBmgJaA9DCNu+R/11MWFAlIaUUpRoFU3oA2gWR0DAoKVVHWjHdX2UKGgGaAloD0MIMj7MXjbtY0CUhpRSlGgVTegDaBZHQMCgvDSgGr11fZQoaAZoCWgPQwhQHEC/77lkQJSGlFKUaBVN6ANoFkdAwKEBfrrxAnV9lChoBmgJaA9DCBHg9C7eLWNAlIaUUpRoFU3oA2gWR0DAoQw4p+c6dX2UKGgGaAloD0MI1NFxNTL2ZkCUhpRSlGgVTegDaBZHQMChQ4keIVN1fZQoaAZoCWgPQwjkLVc/tqxjQJSGlFKUaBVN6ANoFkdAwKGBTlT3qXV9lChoBmgJaA9DCDfiyW5mE2NAlIaUUpRoFU3oA2gWR0DAod6XSjQBdX2UKGgGaAloD0MIoiQk0raUZECUhpRSlGgVTegDaBZHQMCiBJosZpB1fZQoaAZoCWgPQwgZVBuciHRnQJSGlFKUaBVN6ANoFkdAwKIxKL8763V9lChoBmgJaA9DCGpMiLmk02FAlIaUUpRoFU3oA2gWR0DAokOtW+49dX2UKGgGaAloD0MI8BMH0O+/Z0CUhpRSlGgVTegDaBZHQMCioaab4Jx1fZQoaAZoCWgPQwjGpL+XwqNkQJSGlFKUaBVN6ANoFkdAwKKsZBLPEHV9lChoBmgJaA9DCLTMIhTbdmNAlIaUUpRoFU3oA2gWR0DAoreqWC2+dX2UKGgGaAloD0MIGt1B7MypZECUhpRSlGgVTegDaBZHQMCi5jCxeLN1fZQoaAZoCWgPQwgArfnxl1ZkQJSGlFKUaBVN6ANoFkdAwKL2rhisn3V9lChoBmgJaA9DCKtcqPxr4GFAlIaUUpRoFU3oA2gWR0DAowxS5y2hdX2UKGgGaAloD0MI9fHQdzdvYUCUhpRSlGgVTegDaBZHQMCjLsOwxFl1fZQoaAZoCWgPQwhiSiTRyw1aQJSGlFKUaBVN6ANoFkdAwKNMxASnL3V9lChoBmgJaA9DCGkZqfdUl2NAlIaUUpRoFU3oA2gWR0DApJi7qY7adX2UKGgGaAloD0MIpnwIqkYpTECUhpRSlGgVS3VoFkdAwKSkptJnQXV9lChoBmgJaA9DCIAPXru0yV9AlIaUUpRoFU3oA2gWR0DApQ55Rjz7dX2UKGgGaAloD0MI73N8tDiwWECUhpRSlGgVTegDaBZHQMClMjqv/zd1fZQoaAZoCWgPQwiFP8ObtRVjQJSGlFKUaBVN6ANoFkdAwKWe93bEgnV9lChoBmgJaA9DCPcGX5hMi2JAlIaUUpRoFU3oA2gWR0DApdHt4RmLdX2UKGgGaAloD0MIEk92M6OrZ0CUhpRSlGgVTegDaBZHQMCme5X2dup1fZQoaAZoCWgPQwjFckurIX5dQJSGlFKUaBVN6ANoFkdAwKaEZF5OanV9lChoBmgJaA9DCK38MhgjmGVAlIaUUpRoFU3oA2gWR0DAppCuKXOXdX2UKGgGaAloD0MI+dwJ9l+dZkCUhpRSlGgVTegDaBZHQMCmtRXGOuJ1fZQoaAZoCWgPQwiuKCUEqztgQJSGlFKUaBVN6ANoFkdAwKcH+JgssnV9lChoBmgJaA9DCAKbc/BMlmJAlIaUUpRoFU3oA2gWR0DApyB5Z8rqdX2UKGgGaAloD0MIPQ6D+aucZUCUhpRSlGgVTegDaBZHQMCnOKJdjXp1fZQoaAZoCWgPQwg4vvbMEhpkQJSGlFKUaBVN6ANoFkdAwKd0YwZflnV9lChoBmgJaA9DCLfwvFRs+WRAlIaUUpRoFU3oA2gWR0DAp7jSsr/bdX2UKGgGaAloD0MIrIvbaIC4YECUhpRSlGgVTegDaBZHQMCn5pU5uIh1fZQoaAZoCWgPQwg3ww34/FJFQJSGlFKUaBVLemgWR0DAqG7KFIuodX2UKGgGaAloD0MIhe0nY/wnZECUhpRSlGgVTegDaBZHQMCowAT7EYR1fZQoaAZoCWgPQwhIxJRIIjRmQJSGlFKUaBVN6ANoFkdAwKjHCMPz4HV9lChoBmgJaA9DCHvXoC+9tl5AlIaUUpRoFU3oA2gWR0DAqQM+5e7ddX2UKGgGaAloD0MIVFOSdbi+Y0CUhpRSlGgVTegDaBZHQMCpEmXXyy51fZQoaAZoCWgPQwgD7Q4pho5jQJSGlFKUaBVN6ANoFkdAwKkh6zmfXnV9lChoBmgJaA9DCBHF5A2w32BAlIaUUpRoFU3oA2gWR0DAqWQVO9FndX2UKGgGaAloD0MIDkktlEwcZUCUhpRSlGgVTegDaBZHQMCpcQQ176Z1fZQoaAZoCWgPQwjvx+2Xz9xgQJSGlFKUaBVN6ANoFkdAwKl+hlDneXV9lChoBmgJaA9DCOykvizt+GJAlIaUUpRoFU3oA2gWR0DAqcUcENe/dX2UKGgGaAloD0MIfuIA+v3VYECUhpRSlGgVTegDaBZHQMCqHe5OJtV1fZQoaAZoCWgPQwgeigJ9IjZgQJSGlFKUaBVN6ANoFkdAwKoiQfZElXV9lChoBmgJaA9DCAlQU8tWpmNAlIaUUpRoFU3oA2gWR0DAqlBbdJrddX2UKGgGaAloD0MI3c8pyM/2RkCUhpRSlGgVS3RoFkdAwKp3AEdNnHV9lChoBmgJaA9DCNMTlnjA5GZAlIaUUpRoFU3oA2gWR0DAqskb3oLYdX2UKGgGaAloD0MIsmfPZWqUZECUhpRSlGgVTegDaBZHQMCq8dy925h1fZQoaAZoCWgPQwhYxoZudhtmQJSGlFKUaBVN6ANoFkdAwKsaL0jC53V9lChoBmgJaA9DCMjRHFn5hWBAlIaUUpRoFU3oA2gWR0DAq2O8qWkadWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 375, "n_steps": 1280, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.05, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 15, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVfwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjE8vaG9tZS9icmFkLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.60.1-microsoft-standard-WSL2-x86_64-with-glibc2.29 #1 SMP Wed Aug 25 23:20:18 UTC 2021", "Python": "3.8.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.0", "Gym": "0.21.0"}}