File size: 15,122 Bytes
654c931
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1d072b64c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1d072b6550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1d072b65e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1d072b6670>", "_build": "<function ActorCriticPolicy._build at 0x7f1d072b6700>", "forward": "<function ActorCriticPolicy.forward at 0x7f1d072b6790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1d072b6820>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1d072b68b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1d072b6940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1d072b69d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1d072b6a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1d19845ed0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVaAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJRdlH2UKIwCcGmUXZQoSyBLEGWMAnZmlF2UKEsgSxBldWF1Lg==", "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>", "net_arch": [{"pi": [32, 16], "vf": [32, 16]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 2162688, "_total_timesteps": 2146880, "_num_timesteps_at_start": 1146880, "seed": null, "action_noise": null, "start_time": 1651871134.8585863, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVfwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjE8vaG9tZS9icmFkLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAADNUJr32VHW6P9AmPCkrjDyhSnm622x0PQAAgD8AAIA/LcAAPhDjKD/CCuu9/j8fvx6NkT3uNUC+AAAAAAAAAACNlKW9tx+BP+e/Rb7MqzC/BOBIvqngM7wAAAAAAAAAAJoP1LxIT4m6h5uytzExprLsfeI6pmTPNgAAgD8AAIA/oFQkvozXRD4ZS6Y+PSflvkPtmj3D4GQ+AAAAAAAAAACmPiO+d32dP8aN5L4H4RO/vH2qvqJCGr4AAAAAAAAAAIB1FT12YUa8RFMxvRrKqjzVua09e+6KvQAAgD8AAIA/mm9yPGSrnT3AcJG+bweOvoCBo75YPSU9AAAAAAAAAAAAn1g9CTGaP5aRlT4n9ii/E5jrPZrEAz4AAAAAAAAAABotvD2UYpU+Jl9Tvhvl6r6v85Q8yjBwvQAAAAAAAAAAwDeSvYWDgDqGkz4+T4cXvi6roTy31IC/AAAAAAAAgD89zZu+z901Pz5RqrzFTh6/euMTv6LDxj0AAAAAAAAAAJr5cro92lu7Mmmsu5b/rTxAFJ48jRuUvQAAgD8AAIA/U9QhPh/ynj/UvZY+caQbv64ClD7VPcU8AAAAAAAAAAAzM869FBiJuh1CnrhmPniyQsVCO2gUtDcAAIA/AACAPxonAD6VwHk+M/g+vnpJ/74R+V09iynHvAAAAAAAAAAAzfTxO1KpxLuqXii+DJzkvQKNlD3UIQg/AAAAAAAAgD/NBco9wR5tPuKmR74XJQK/u7KkO+hWDbwAAAAAAAAAALPyqr3iVyU/XszGvBZBIL++lQe+RD0EvQAAAAAAAAAAhXGRvlxnoD+uVQS/UREUvyu7F7/qviu+AAAAAAAAAAAz45Q6OJ2BPPoIv7yErcW+XXcqPTIQRrwAAAAAAAAAABO4QL6MdI8/OtzGvoL4Lb8Vsrq++KCyvAAAAAAAAAAAGnMyPk1v2D6aiE2+orkMv6/XrT2tD/i9AAAAAAAAAAAAOCy7SJeMugZKLLf6MzSyzMGhOlY9SDYAAIA/AACAP41IsD1aqvs+0aWnvSnMAb+JD6g9045CvQAAAAAAAAAA89fgvXlNMj4SgX0+IqPJvu3ZYTs+evM9AAAAAAAAAADmXDu+TjvoPb0ZCz+GCxC/9URevuq6xz4AAAAAAAAAAM1Kdb1cgze66Oguti+uR7HK0ys62LdYNQAAgD8AAIA/ZuxFvKXKtT+aERu/6/NGPkuBRzz1LdI9AAAAAAAAAACaqtU84USFunJtNbYEBAax3vSquPadXTUAAIA/AACAP2ZmrLqnVrI/MkGIveZjz77me8Y6alZ0PAAAAAAAAAAAAwyRPkUQBz8t1uK9MEgYv5jqEz+z+nm9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007363243404382214, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAOKuXgX1ckCUhpRSlIwBbJRLvYwBdJRHQLlb7xt52Qp1fZQoaAZoCWgPQwiq86j4/3hxQJSGlFKUaBVL2WgWR0C5W+75Ec81dX2UKGgGaAloD0MIw9Zs5SV6c0CUhpRSlGgVS61oFkdAuVvzUAksz3V9lChoBmgJaA9DCO3vbI9eYHNAlIaUUpRoFUvTaBZHQLlb8su3+dd1fZQoaAZoCWgPQwi/fogNlvxxQJSGlFKUaBVLomgWR0C5W/v7FbV0dX2UKGgGaAloD0MIn+klxvKSckCUhpRSlGgVS+RoFkdAuVv+oKlYU3V9lChoBmgJaA9DCKtCA7HsJnFAlIaUUpRoFUv4aBZHQLlcDWmP5pJ1fZQoaAZoCWgPQwgWhPI+jrNxQJSGlFKUaBVLyGgWR0C5XA1+mWMTdX2UKGgGaAloD0MI06I+yd2hcECUhpRSlGgVS6hoFkdAuVwsMEzO5nV9lChoBmgJaA9DCHzT9NmBfHBAlIaUUpRoFUvUaBZHQLlcOAhje9B1fZQoaAZoCWgPQwgVjiCVIktwQJSGlFKUaBVLp2gWR0C5XExoRIz4dX2UKGgGaAloD0MIwLLSpBQ0c0CUhpRSlGgVS7xoFkdAuVxOFajesXV9lChoBmgJaA9DCAbzV8gclHNAlIaUUpRoFUu8aBZHQLlcc/tpmEp1fZQoaAZoCWgPQwge/MQBNKxyQJSGlFKUaBVLyGgWR0C5XHnhfjS5dX2UKGgGaAloD0MIzH9Iv31nckCUhpRSlGgVS9hoFkdAuVyJ7eEZi3V9lChoBmgJaA9DCJNxjGRPSnJAlIaUUpRoFUusaBZHQLlcidjXnQp1fZQoaAZoCWgPQwgaNV8lXw1zQJSGlFKUaBVLsmgWR0C5XI0aZQYUdX2UKGgGaAloD0MId0tywG7pcECUhpRSlGgVS7FoFkdAuVyVnscABHV9lChoBmgJaA9DCAYwZeBAPHJAlIaUUpRoFUvUaBZHQLlcm+36Q/51fZQoaAZoCWgPQwhffTz03RZxQJSGlFKUaBVLrGgWR0C5XKQHE/B4dX2UKGgGaAloD0MILjpZar0NckCUhpRSlGgVS8VoFkdAuVyp5a/yoXV9lChoBmgJaA9DCMjrwaT4IHNAlIaUUpRoFUvJaBZHQLlcrpJf6XV1fZQoaAZoCWgPQwjedTbk39NwQJSGlFKUaBVLtGgWR0C5XLlqBVdYdX2UKGgGaAloD0MI7GrylFWbcECUhpRSlGgVS7ZoFkdAuVy/blA/s3V9lChoBmgJaA9DCC6rsBkgKXNAlIaUUpRoFUvQaBZHQLlcxmapgkV1fZQoaAZoCWgPQwhpG3+i8mF0QJSGlFKUaBVL6GgWR0C5XMmDHwPRdX2UKGgGaAloD0MIu9IyUm8zckCUhpRSlGgVS9ZoFkdAuVzI7FKkEnV9lChoBmgJaA9DCPt2EhE+wnJAlIaUUpRoFUvLaBZHQLlcylyzXz11fZQoaAZoCWgPQwh9sIwNXUFxQJSGlFKUaBVLq2gWR0C5XNb6DXe4dX2UKGgGaAloD0MIjPZ4IR0cckCUhpRSlGgVS8ZoFkdAuVzgoc7yQXV9lChoBmgJaA9DCBpqFJKMQXNAlIaUUpRoFUu5aBZHQLlc83I+4b11fZQoaAZoCWgPQwjNH9PaNA10QJSGlFKUaBVLtWgWR0C5XPfC/GlzdX2UKGgGaAloD0MI2bRSCKT6c0CUhpRSlGgVS8JoFkdAuVz8G3WnTHV9lChoBmgJaA9DCMx7nGnCj3FAlIaUUpRoFUvGaBZHQLlc/CBwuNB1fZQoaAZoCWgPQwieP21U501yQJSGlFKUaBVLw2gWR0C5XP1Ed/8VdX2UKGgGaAloD0MIsffii/aXcUCUhpRSlGgVS7VoFkdAuV0KLvTgEXV9lChoBmgJaA9DCB8PfXerP3FAlIaUUpRoFUvGaBZHQLldEVbiZOV1fZQoaAZoCWgPQwisi9togCpzQJSGlFKUaBVL22gWR0C5XRjUExIrdX2UKGgGaAloD0MIs9E5P8VgckCUhpRSlGgVS8VoFkdAuV0fzoUzsXV9lChoBmgJaA9DCKURM/t8dXNAlIaUUpRoFUvdaBZHQLldJH8jzI51fZQoaAZoCWgPQwjg2/RnP4ZxQJSGlFKUaBVLwmgWR0C5XTmgi/widX2UKGgGaAloD0MIp0HRPMD6cUCUhpRSlGgVS6xoFkdAuV07I/7iynV9lChoBmgJaA9DCOwX7IatfXJAlIaUUpRoFUvCaBZHQLldRPN3W4F1fZQoaAZoCWgPQwh6q65DNbtMQJSGlFKUaBVLdGgWR0C5XUpwwTM8dX2UKGgGaAloD0MIpU+r6E+Mc0CUhpRSlGgVS79oFkdAuV1WFtbcGnV9lChoBmgJaA9DCAxYchWLOHJAlIaUUpRoFUuraBZHQLlddD0Dlo11fZQoaAZoCWgPQwg6kzZVd4lwQJSGlFKUaBVLrWgWR0C5XXnxjJ+2dX2UKGgGaAloD0MItB6+TFTHcUCUhpRSlGgVS6doFkdAuV159Dx9X3V9lChoBmgJaA9DCNwsXixMC3BAlIaUUpRoFUu3aBZHQLldlbblA/t1fZQoaAZoCWgPQwgH8BZIkPFyQJSGlFKUaBVLz2gWR0C5XZdfw7T2dX2UKGgGaAloD0MIqDY4Eb09c0CUhpRSlGgVS7loFkdAuV2gtHxz73V9lChoBmgJaA9DCM9IhEYwF3JAlIaUUpRoFUvZaBZHQLldoLGJemh1fZQoaAZoCWgPQwito6oJIllxQJSGlFKUaBVLuWgWR0C5XaYvWYnfdX2UKGgGaAloD0MIU1p/S0ADdECUhpRSlGgVS9FoFkdAuV2qnjyWiXV9lChoBmgJaA9DCKjDCrf8QHJAlIaUUpRoFUueaBZHQLldrrlvIfd1fZQoaAZoCWgPQwgj9DP1On9wQJSGlFKUaBVLuGgWR0C5XcK7I1cddX2UKGgGaAloD0MIT8k5sQdLckCUhpRSlGgVS8BoFkdAuV3HdSEUTXV9lChoBmgJaA9DCHU/pyB/b3JAlIaUUpRoFUvBaBZHQLld1HIp6Qh1fZQoaAZoCWgPQwglWBzOfFdxQJSGlFKUaBVLzmgWR0C5XdWyX2M9dX2UKGgGaAloD0MIBBxCldrrcECUhpRSlGgVS8loFkdAuV3fRJEpiXV9lChoBmgJaA9DCNIBSdi3YnBAlIaUUpRoFUulaBZHQLld3qqwQlN1fZQoaAZoCWgPQwir61BNyapzQJSGlFKUaBVLzGgWR0C5XeL2Dg62dX2UKGgGaAloD0MIsd09QHcbckCUhpRSlGgVS75oFkdAuV39JqZc9nV9lChoBmgJaA9DCJpbIaxGTXJAlIaUUpRoFUvUaBZHQLleB4oqkM11fZQoaAZoCWgPQwiFfNCz2RByQJSGlFKUaBVLw2gWR0C5Xgzq4YrKdX2UKGgGaAloD0MIndZtUHuTckCUhpRSlGgVS7ZoFkdAuV4Q9JSR83V9lChoBmgJaA9DCE5DVOFPgXFAlIaUUpRoFUvKaBZHQLleFrLyMDR1fZQoaAZoCWgPQwgNUvAUMpFyQJSGlFKUaBVLqmgWR0C5XitPHktFdX2UKGgGaAloD0MIrgyqDY6ac0CUhpRSlGgVS8RoFkdAuV40IgNgB3V9lChoBmgJaA9DCCQofow5X3RAlIaUUpRoFUvWaBZHQLleN7uUliV1fZQoaAZoCWgPQwiZR/5gIFBzQJSGlFKUaBVLuGgWR0C5Xj8rI5o5dX2UKGgGaAloD0MIa2CrBEuAcUCUhpRSlGgVS8loFkdAuV5BDc/MXHV9lChoBmgJaA9DCBWOIJUiCXNAlIaUUpRoFUvpaBZHQLleRUiILw51fZQoaAZoCWgPQwjKNnAH6gZzQJSGlFKUaBVLtGgWR0C5Xksr7O3VdX2UKGgGaAloD0MIr3srElOFc0CUhpRSlGgVS99oFkdAuV5TySV4YHV9lChoBmgJaA9DCJ4j8l3KCXBAlIaUUpRoFUvCaBZHQLleWI9TxXp1fZQoaAZoCWgPQwg8TtGR3HVyQJSGlFKUaBVLomgWR0C5XmIptrKvdX2UKGgGaAloD0MIexSuR6F/ckCUhpRSlGgVS55oFkdAuV55CHARCnV9lChoBmgJaA9DCHQLXYnAbHNAlIaUUpRoFUu+aBZHQLleg2H+Idl1fZQoaAZoCWgPQwg8bCIzVzFyQJSGlFKUaBVLqmgWR0C5XpM94eLfdX2UKGgGaAloD0MI9HAC02nacUCUhpRSlGgVS6NoFkdAuV6TTEzfrXV9lChoBmgJaA9DCOfEHtqHNnFAlIaUUpRoFUu1aBZHQLlemPZqVQh1fZQoaAZoCWgPQwifdvhrsvpyQJSGlFKUaBVLr2gWR0C5XpqxxDLKdX2UKGgGaAloD0MI78UX7bEtc0CUhpRSlGgVS8toFkdAuV6b8HfMwHV9lChoBmgJaA9DCDxodt1bfHJAlIaUUpRoFUuhaBZHQLlep1XeWOZ1fZQoaAZoCWgPQwh6whIPaAxzQJSGlFKUaBVLsmgWR0C5XqyJTER8dX2UKGgGaAloD0MIT7LV5VQMckCUhpRSlGgVS/RoFkdAuV6w/yGzr3V9lChoBmgJaA9DCPOv5ZWrY3JAlIaUUpRoFUucaBZHQLleu/Rmbsp1fZQoaAZoCWgPQwhgcw6eiRRzQJSGlFKUaBVLxGgWR0C5Xr3J9y93dX2UKGgGaAloD0MIgPEMGvowckCUhpRSlGgVS75oFkdAuV7gUrTYunV9lChoBmgJaA9DCJPheD4DNXJAlIaUUpRoFUu9aBZHQLle4A1Nxlx1fZQoaAZoCWgPQwh1BHCzeKpSQJSGlFKUaBVLdWgWR0C5Xuj2OAAidX2UKGgGaAloD0MIl631RUI7ckCUhpRSlGgVS9VoFkdAuV70RaouPHV9lChoBmgJaA9DCEF/oUdMvnJAlIaUUpRoFUvGaBZHQLle+dCVryl1fZQoaAZoCWgPQwgOLEfIgFlxQJSGlFKUaBVLy2gWR0C5XvzDn/1hdX2UKGgGaAloD0MIcSAkC9jycECUhpRSlGgVS7NoFkdAuV8EHiWE9XV9lChoBmgJaA9DCMztXu4TvnNAlIaUUpRoFUusaBZHQLlfCV2Rq491fZQoaAZoCWgPQwhDq5Mz1MxxQJSGlFKUaBVLwWgWR0C5Xxy2x6fKdX2UKGgGaAloD0MIEi9P5wr8ckCUhpRSlGgVS7VoFkdAuV8zQF9roHV9lChoBmgJaA9DCM5uLZOhYXBAlIaUUpRoFUu7aBZHQLlfM1TBInV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 528, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVfwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjE8vaG9tZS9icmFkLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.60.1-microsoft-standard-WSL2-x86_64-with-glibc2.29 #1 SMP Wed Aug 25 23:20:18 UTC 2021", "Python": "3.8.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.0", "Gym": "0.21.0"}}