DeBERTa-base / modeling /cache_utils.py
3v324v23's picture
update
8e64bfa
# Copyright (c) Microsoft, Inc. 2020
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
#
# Zhou Bo
# Date: 05/15/2020
#
import pdb
import torch
import os
import requests
from .config import ModelConfig
import pathlib
import loguru
logger = loguru.logger
__all__ = ['pretrained_models', 'load_model_state', 'load_vocab']
class PretrainedModel:
def __init__(self, name, vocab, vocab_type, model='pytorch_model.bin', config='config.json', **kwargs):
self.__dict__.update(kwargs)
host = f'https://huggingface.co/microsoft/{name}/resolve/main/'
self.name = name
self.model_url = host + model
self.config_url = host + config
self.vocab_url = host + vocab
self.vocab_type = vocab_type
pretrained_models= {
'base': PretrainedModel('deberta-base', 'bpe_encoder.bin', 'gpt2'),
'large': PretrainedModel('deberta-large', 'bpe_encoder.bin', 'gpt2'),
'xlarge': PretrainedModel('deberta-xlarge', 'bpe_encoder.bin', 'gpt2'),
'base-mnli': PretrainedModel('deberta-base-mnli', 'bpe_encoder.bin', 'gpt2'),
'large-mnli': PretrainedModel('deberta-large-mnli', 'bpe_encoder.bin', 'gpt2'),
'xlarge-mnli': PretrainedModel('deberta-xlarge-mnli', 'bpe_encoder.bin', 'gpt2'),
'xlarge-v2': PretrainedModel('deberta-v2-xlarge', 'spm.model', 'spm'),
'xxlarge-v2': PretrainedModel('deberta-v2-xxlarge', 'spm.model', 'spm'),
'xlarge-v2-mnli': PretrainedModel('deberta-v2-xlarge-mnli', 'spm.model', 'spm'),
'xxlarge-v2-mnli': PretrainedModel('deberta-v2-xxlarge-mnli', 'spm.model', 'spm'),
'deberta-v3-small': PretrainedModel('deberta-v3-small', 'spm.model', 'spm'),
'deberta-v3-base': PretrainedModel('deberta-v3-base', 'spm.model', 'spm'),
'deberta-v3-large': PretrainedModel('deberta-v3-large', 'spm.model', 'spm'),
'mdeberta-v3-base': PretrainedModel('mdeberta-v3-base', 'spm.model', 'spm'),
'deberta-v3-xsmall': PretrainedModel('deberta-v3-xsmall', 'spm.model', 'spm'),
}
def load_model_state(path_or_pretrained_id, tag=None, no_cache=False, cache_dir=None):
model_path = path_or_pretrained_id
if model_path and (not os.path.exists(model_path)) and (path_or_pretrained_id.lower() in pretrained_models):
_tag = tag
pretrained = pretrained_models[path_or_pretrained_id.lower()]
if _tag is None:
_tag = 'latest'
if not cache_dir:
cache_dir = os.path.join(pathlib.Path.home(), f'.~DeBERTa/assets/{_tag}/{pretrained.name}')
os.makedirs(cache_dir, exist_ok=True)
model_path = os.path.join(cache_dir, 'pytorch_model.bin')
elif not model_path:
return None,None
config_path = os.path.join(os.path.dirname(model_path), 'model_config.json')
model_state = torch.load(model_path, map_location='cpu')
logger.info("Loaded pretrained model file {}".format(model_path))
if 'config' in model_state:
model_config = ModelConfig.from_dict(model_state['config'])
elif os.path.exists(config_path):
model_config = ModelConfig.from_json_file(config_path)
else:
model_config = None
return model_state, model_config