DeBERTa-base / modeling /wywlm_modeling.py
bozhou's picture
Upload 22 files
23fe031
raw
history blame
21.3 kB
# Copyright (c) Microsoft, Inc. 2020
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
#
# Zhou Bo
# Date: 01/15/2020
#
import copy
import torch
import os
import random
import json
from .ops import *
from .bert import *
from .bert import BertLayer
from .config import ModelConfig
from .cache_utils import load_model_state
from .nnmodule import NNModule
# from ..utils.bad_grad_viz import register_hooks
__all__ = ['WywLM']
def flatten_states(q_states, mask_index):
q_states = q_states.reshape((-1, q_states.size(-1)))
q_states = q_states.index_select(0, mask_index)
return q_states
class UGDecoder(torch.nn.Module):
def __init__(self, config, vocab_size):
super().__init__()
self.config = config
self.position_biased_input = getattr(config, 'position_biased_input', True)
# self.layer = torch.nn.ModuleList([BertLayer(config) for _ in range(2)])
# self.causal_mask = torch.tril(torch.ones((input_ids.dim(0), input_ids.dim(1), input_ids.dim(1))), diagonal=0)
def forward(self, ctx_layers, word_embedding, input_ids, z_states, attention_mask, \
encoder, target_ids=None, relative_pos=None, decode=False, s2s_idx=None):
causal_outputs, lm_outputs = self.emd_context_layer(ctx_layers, z_states, attention_mask,
encoder, target_ids, input_ids,
relative_pos=relative_pos, decode=decode,
word_embedding=word_embedding, s2s_idx=s2s_idx)
# loss_fct = torch.nn.CrossEntropyLoss(reduction='none')
# ctx_layer = mlm_ctx_layers[-1]
# lm_logits = lm_logits.view(-1, lm_logits.size(-1))
return causal_outputs[-1], lm_outputs[-1]
def emd_context_layer(self, encoder_layers, z_states, attention_mask, encoder, target_ids, input_ids,\
relative_pos=None, decode=False, word_embedding=None, s2s_idx=None):
# if decode:
# attention_mask = torch.tril(torch.ones((input_ids.shape[0], 1, input_ids.shape[1], input_ids.shape[1])), diagonal=0).to(input_ids.device)
# else:
if attention_mask.dim()<=2:
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
att_mask = extended_attention_mask.byte()
attention_mask = att_mask*att_mask.squeeze(-2).unsqueeze(-1)
elif attention_mask.dim()==3:
attention_mask = attention_mask.unsqueeze(1)
if not self.position_biased_input:
lm_outputs = []
# else:
hidden_states = encoder_layers[-2]
layers = [encoder.layer[-1] for _ in range(2)]
z_states += hidden_states
query_states = z_states
query_mask = attention_mask
rel_embeddings = encoder.get_rel_embedding()
for layer in layers:
# TODO: pass relative pos ids
output = layer(hidden_states, query_mask, return_att=False,
query_states=query_states, relative_pos=relative_pos,
rel_embeddings=rel_embeddings)
query_states = output
lm_outputs.append(query_states)
# if decode:
attention_mask = torch.tril(torch.ones((input_ids.shape[0], 1, input_ids.shape[1], input_ids.shape[1])),
diagonal=0).to(input_ids.device)
causal_outputs = []
# with torch.no_grad():
target_embd = word_embedding(target_ids)
target_embd += z_states.detach()
# self attention of target
output = layers[-2](target_embd, attention_mask, return_att=False,
query_states=target_embd, relative_pos=relative_pos,
rel_embeddings=encoder.get_rel_embedding())
causal_outputs.append(output)
# cross attention
output = layers[-1](output, attention_mask, return_att=False,
query_states=query_states, relative_pos=relative_pos,
rel_embeddings=encoder.get_rel_embedding())
causal_outputs.append(output)
else:
causal_outputs = [encoder_layers[-1]]
lm_outputs = [encoder_layers[-1]]
return causal_outputs, lm_outputs
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
class WywLMLoss(torch.nn.Module):
def __init__(self, config) -> None:
super().__init__()
self.loss_fn = torch.nn.CrossEntropyLoss(reduction='mean')
hidden_size = getattr(config, 'embedding_size', config.hidden_size)
self.compare = torch.nn.Linear(hidden_size * 3, 2)
# self.mlm_head = BertLMPredictionHead(config, config.vocab_size)
self.lm_head = BertLMPredictionHead(config, config.vocab_size)
def forward(self, logits, lm_logits, target_ids, dict_pos, input_ids, target_ids_s2s, decode=False, ebd_weight=None, task=0):
loss_compare = torch.tensor(0).to(logits).float()
mlm_loss = torch.tensor(0).to(logits).float()
lm_loss = torch.tensor(0).to(logits).float()
# else:
if task == 1:
compare_logits = []
compare_labels = []
for bi, sampel_pos in enumerate(dict_pos):
num_pos = int((sampel_pos > 0).sum().detach().cpu().numpy() / 4) - 1
if num_pos <= 1:
continue
for pi in range(num_pos):
pos = sampel_pos[pi]
entry_logits = logits[bi][pos[0]: pos[1]]
desc_logits = logits[bi][pos[2]: pos[3]]
neg_num = random.randint(0, num_pos) # torch.randint(low=0, high=num_pos, size=(1,))
ids_neg = input_ids[bi][sampel_pos[neg_num][0]: sampel_pos[neg_num][1]]
ids_pos = input_ids[bi][pos[0]: pos[1]]
if neg_num == pi or (ids_neg.shape == ids_pos.shape and torch.all(ids_neg == ids_pos)):
neg_num = -1
for ni in range(num_pos):
neg_num = random.randint(0, num_pos)# torch.randint(low=0, high=num_pos, size=(1,))
ids_neg = input_ids[bi][sampel_pos[neg_num][0]: sampel_pos[neg_num][1]]
if neg_num != pi and (ids_neg.shape != ids_pos.shape or not torch.all(ids_neg == ids_pos)):
break
else:
neg_num = -1
if neg_num == -1:
continue
neg_desc_logits = logits[bi][sampel_pos[neg_num][2]: sampel_pos[neg_num][3]]
if torch.any(torch.isnan(neg_desc_logits)):
print('error')
entry_logits = entry_logits.mean(dim=0, keepdim=True).float()
desc_logits = desc_logits.mean(dim=0, keepdim=True).float()
neg_desc_logits = neg_desc_logits.mean(dim=0, keepdim=True).float()
compare_logits.append(torch.concat([entry_logits, desc_logits, entry_logits - desc_logits], dim=1))
compare_logits.append(torch.concat([entry_logits, neg_desc_logits, entry_logits - neg_desc_logits], dim=1))
compare_labels += [1, 0]
if len(compare_logits) > 0:
compare_logits = torch.concat(compare_logits, dim=0).to(logits.dtype)
compare_pred = self.compare(compare_logits)
loss_compare = self.loss_fn(compare_pred, torch.tensor(compare_labels, dtype=torch.long, device=compare_logits.device)).mean()
if torch.all(loss_compare == 0):
entry_logits = logits[0][0].unsqueeze(0)
compare_logits = torch.concat([entry_logits, entry_logits, entry_logits - entry_logits], dim=1)
compare_pred = self.compare(compare_logits)
compare_labels = [1]
loss_compare = self.loss_fn(compare_pred, torch.tensor(compare_labels, dtype=torch.long, device=compare_logits.device)).mean()
# if decode:
# lm_labels = target_ids_s2s.index_select(0, (target_ids_s2s.sum(-1) > 0).nonzero().view(-1)[0])
# lm_labels = lm_labels.repeat(logits.shape[0], 1).clone().view(-1)
# lm_labels = target_ids_s2s.clone()
# target_ids_s2s = shift_tokens_right(target_ids_s2s, 0, 1)
# target_ids_s2s.masked_fill_(target_ids_s2s==0, 3)
if task == 0:
_mask_index = (target_ids_s2s > 0).view(-1).nonzero().view(-1)
lm_logits_ = flatten_states(lm_logits, _mask_index)
lm_pred = self.lm_head(lm_logits_, ebd_weight).float()
lm_labels = target_ids_s2s.clone().reshape(-1)
lm_labels = lm_labels.index_select(0, _mask_index)
# lm_pred = torch.nn.functional.log_softmax(lm_pred)
# lm_loss = torch.nn.functional.nll_loss(lm_pred, lm_labels.long())
lm_loss = self.loss_fn(lm_pred, lm_labels.long())
# dot = register_hooks(lm_loss)
# lm_loss.backward()
# dot().save('tmp.dot')
_mask_index = (target_ids > 0).view(-1).nonzero().view(-1)
mlm_logits = flatten_states(logits, _mask_index)
mlm_pred = self.lm_head(mlm_logits, ebd_weight).float()
mlm_labels = target_ids.view(-1)
mlm_labels = mlm_labels.index_select(0, _mask_index)
mlm_loss = self.loss_fn(mlm_pred, mlm_labels.long())
return loss_compare, mlm_loss, lm_loss
class WywLM(torch.nn.Module):
""" DeBERTa encoder
This module is composed of the input embedding layer with stacked transformer layers with disentangled attention.
Parameters:
config:
A model config class instance with the configuration to build a new model. The schema is similar to `BertConfig`, \
for more details, please refer :class:`~DeBERTa.deberta.ModelConfig`
pre_trained:
The pre-trained DeBERTa model, it can be a physical path of a pre-trained DeBERTa model or a released configurations, \
i.e. [**base, large, base_mnli, large_mnli**]
"""
def __init__(self, config=None, pre_trained=None):
super().__init__()
state = None
if pre_trained is not None:
state, model_config = load_model_state(pre_trained)
if config is not None and model_config is not None:
for k in config.__dict__:
if k not in ['hidden_size',
'intermediate_size',
'num_attention_heads',
'num_hidden_layers',
'vocab_size',
'max_position_embeddings']:
model_config.__dict__[k] = config.__dict__[k]
config = copy.copy(model_config)
self.embeddings = BertEmbeddings(config)
self.encoder = BertEncoder(config)
self.config = config
self.pre_trained = pre_trained
self.apply_state(state)
def forward(self, input_ids, attention_mask=None, token_type_ids=None, output_all_encoded_layers=True, position_ids = None, return_att = False):
"""
Args:
input_ids:
a torch.LongTensor of shape [batch_size, sequence_length] \
with the word token indices in the vocabulary
attention_mask:
an optional parameter for input mask or attention mask.
- If it's an input mask, then it will be torch.LongTensor of shape [batch_size, sequence_length] with indices \
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max \
input sequence length in the current batch. It's the mask that we typically use for attention when \
a batch has varying length sentences.
- If it's an attention mask then it will be torch.LongTensor of shape [batch_size, sequence_length, sequence_length]. \
In this case, it's a mask indicate which tokens in the sequence should be attended by other tokens in the sequence.
token_type_ids:
an optional torch.LongTensor of shape [batch_size, sequence_length] with the token \
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to \
a `sentence B` token (see BERT paper for more details).
output_all_encoded_layers:
whether to output results of all encoder layers, default, True
Returns:
- The output of the stacked transformer layers if `output_all_encoded_layers=True`, else \
the last layer of stacked transformer layers
- Attention matrix of self-attention layers if `return_att=True`
Example::
# Batch of wordPiece token ids.
# Each sample was padded with zero to the maxium length of the batch
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
# Mask of valid input ids
attention_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
# DeBERTa model initialized with pretrained base model
bert = DeBERTa(pre_trained='base')
encoder_layers = bert(input_ids, attention_mask=attention_mask)
"""
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
token_mask = torch.ones_like(input_ids)
else:
idxs = torch.flip(torch.cumsum(torch.flip(token_type_ids, [-1]), axis=1), [-1])
token_mask = idxs > 0
token_mask = token_mask.byte()
ebd_output = self.embeddings(input_ids.to(torch.long), token_type_ids.to(torch.long), position_ids, token_mask)
embedding_output = ebd_output['embeddings']
encoder_output = self.encoder(embedding_output,
attention_mask,
output_all_encoded_layers=output_all_encoded_layers, return_att = return_att)
encoder_output.update(ebd_output)
return encoder_output
def apply_state(self, state = None):
""" Load state from previous loaded model state dictionary.
Args:
state (:obj:`dict`, optional): State dictionary as the state returned by torch.module.state_dict(), default: `None`. \
If it's `None`, then will use the pre-trained state loaded via the constructor to re-initialize \
the `DeBERTa` model
"""
if self.pre_trained is None and state is None:
return
if state is None:
state, config = load_model_state(self.pre_trained)
self.config = config
prefix = ''
for k in state:
if 'embeddings.' in k:
if not k.startswith('embeddings.'):
prefix = k[:k.index('embeddings.')]
break
missing_keys = []
unexpected_keys = []
error_msgs = []
self._load_from_state_dict(state, prefix = prefix, local_metadata=None, strict=True, missing_keys=missing_keys, unexpected_keys=unexpected_keys, error_msgs=error_msgs)
class MaskedLanguageModel(NNModule):
""" Masked language model
"""
def __init__(self, config, *wargs, **kwargs):
super().__init__(config)
self.backbone = WywLM(config)
self.max_relative_positions = getattr(config, 'max_relative_positions', -1)
self.position_buckets = getattr(config, 'position_buckets', -1)
if self.max_relative_positions <1:
self.max_relative_positions = config.max_position_embeddings
# self.mlm_predictions = UGDecoder(self.backbone.config, self.backbone.embeddings.word_embeddings.weight.size(0))
self.lm_predictions = UGDecoder(self.backbone.config, self.backbone.embeddings.word_embeddings.weight.size(0))
self.device = None
self.loss = WywLMLoss(config)
# self.loss_lm = WywLMLoss(config)
self.apply(self.init_weights)
def forward(self, samples, position_ids=None):
task = samples['task']
if task == 0:
input_ids = samples['s2s_input_ids']
type_ids = samples['s2s_token_type_ids']
attention_mask = samples['s2s_attention_mask']
labels = samples['s2s_masked_lm_labels']
dict_pos = samples['dict_pos']
s2s_label = samples['s2s_label']
else:
input_ids = samples['input_ids']
type_ids = samples['token_type_ids']
attention_mask = samples['attention_mask']
labels = samples['masked_lm_labels']
dict_pos = samples['dict_pos']
s2s_label = samples['s2s_label']
if self.device is None:
self.device = list(self.parameters())[0].device
input_ids = input_ids.to(self.device)
type_ids = None
lm_labels = labels.to(self.device)
s2s_label = s2s_label.to(self.device)
attention_mask = attention_mask.to(self.device)
encoder_output = self.backbone(input_ids, attention_mask, type_ids, output_all_encoded_layers=True, position_ids = position_ids)
encoder_layers = encoder_output['hidden_states']
z_states = encoder_output['position_embeddings']
ctx_layer = encoder_layers[-1]
mlm_loss = torch.tensor(0).to(ctx_layer).float()
lm_loss = torch.tensor(0).to(ctx_layer).float()
lm_logits = None
label_inputs = None
loss = torch.tensor(0).to(ctx_layer).float()
loss_compare = torch.tensor(0).to(ctx_layer).float()
ebd_weight = self.backbone.embeddings.word_embeddings.weight
lm_logits, mlm_logits = self.lm_predictions(encoder_layers, self.backbone.embeddings.word_embeddings,
input_ids, z_states,
attention_mask, self.backbone.encoder,
target_ids=lm_labels)
# if lm_labels.detach().sum() != 0:
loss_compare, mlm_loss, lm_loss = self.loss(mlm_logits,
lm_logits,
lm_labels,
dict_pos,
target_ids_s2s=s2s_label,
decode=False,
ebd_weight=ebd_weight,
input_ids=input_ids,
task=task)
loss = loss_compare * 10 + mlm_loss + lm_loss
# if s2s_label.detach().sum() != 0:
# s2s_idx = (s2s_label.sum(-1)>0).nonzero().view(-1)
# s2s_label = s2s_label.index_select(0, s2s_idx)
# # ebd_weight = self.backbone.embeddings.word_embeddings.weight
# # lm_logits = self.lm_predictions(encoder_layers[-3], self.backbone.embeddings.word_embeddings,
# # input_ids.index_select(0, s2s_idx), z_states.index_select(0, s2s_idx),
# # attention_mask.index_select(0, s2s_idx), self.backbone.encoder,
# # target_ids=s2s_label,
# # decode=True, s2s_idx=s2s_idx)
# # lm_logits = encoder_layers[-1].detach().index_select(0, s2s_idx)
# _, lm_loss = self.loss_lm(lm_logits,
# s2s_label,
# torch.zeros_like(dict_pos),
# decode=True,
# ebd_weight=ebd_weight,
# input_ids=input_ids.index_select(0, s2s_idx))
# lm_loss = lm_logits.max()
# loss = loss + lm_loss
return {
'logits' : lm_logits,
'labels' : lm_labels,
's2s_label': s2s_label,
'loss' : loss.float(),
'loss_compare': loss_compare.float(),
'lm_loss': lm_loss.float(),
'mlm_loss': mlm_loss.float()
}