File size: 2,255 Bytes
361f4f3 e3d7cd3 361f4f3 70aa473 361f4f3 3128428 361f4f3 6c8f71f eded877 df99f23 a2f4e64 a2c2d82 9343b4d 5ee2a89 70aa473 5ee2a89 37daef4 361f4f3 163eb69 361f4f3 3128428 361f4f3 f0b89f3 361f4f3 2e5002b a825c09 f0b89f3 361f4f3 bda656c dc50ea5 eded877 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
language: ary
base_model: facebook/wav2vec2-large-xlsr-53
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: XLSR Wav2Vec2 Moroccan Arabic dialect by Boumehdi
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
metrics:
- name: Test WER
type: wer
value: 0.084904
---
# Wav2Vec2-Large-XLSR-53-Moroccan-Darija
**wav2vec2-large-xlsr-53 new model**
- Fine-tuned on 57 hours of labeled Darija Audios extracted from MDVC (https://ijeecs.iaescore.com/index.php/IJEECS/article/view/35709) which contains more than 1000 hours of Moroccan Darija "ary".
- Fine-tuning is ongoing 24/7 to enhance accuracy.
- We are consistently adding data to the model every day (We prefer not to add all MDVC Corpus at once as we are trying to standardize more and more the way we write the Moroccan Darija).
<table><thead><tr><th><strong>Training Loss</strong></th> <th><strong>Validation</strong></th> <th><strong>Loss Wer</strong></th></tr></thead> <tbody><tr>
<td>0.121300</td>
<td>0.103430</td>
<td>0.084904</td>
</tr> </tbody></table>
## Usage
The model can be used directly as follows:
```python
import librosa
import torch
from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2ForCTC, Wav2Vec2Processor, TrainingArguments, Wav2Vec2FeatureExtractor, Trainer
tokenizer = Wav2Vec2CTCTokenizer("./vocab.json", unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|")
processor = Wav2Vec2Processor.from_pretrained('boumehdi/wav2vec2-large-xlsr-moroccan-darija', tokenizer=tokenizer)
model=Wav2Vec2ForCTC.from_pretrained('boumehdi/wav2vec2-large-xlsr-moroccan-darija')
# load the audio data (use your own wav file here!)
input_audio, sr = librosa.load('file.wav', sr=16000)
# tokenize
input_values = processor(input_audio, return_tensors="pt", padding=True).input_values
# retrieve logits
logits = model(input_values).logits
tokens = torch.argmax(logits, axis=-1)
# decode using n-gram
transcription = tokenizer.batch_decode(tokens)
# print the output
print(transcription)
```
Output: قالت ليا هاد السيد هادا ما كاينش بحالو
email: [email protected]
BOUMEHDI Ahmed
|