File size: 2,238 Bytes
361f4f3 bda656c 361f4f3 3128428 361f4f3 bda656c 361f4f3 2e5002b 37daef4 361f4f3 3128428 361f4f3 2e5002b a825c09 d9b4b0b 361f4f3 bda656c 800e8e5 bda656c 1670723 bda656c 361f4f3 57d37ce 632b9c9 57d37ce 632b9c9 57d37ce 14d40fa bda656c 3128428 14d40fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
language: ary
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: XLSR Wav2Vec2 Moroccan Arabic dialect by Boumehdi
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
metrics:
- name: Test WER
type: wer
value: 44.30
---
# Wav2Vec2-Large-XLSR-53-Moroccan-Darija
**wav2vec2-large-xlsr-53** fine-tuned on 8.5 hours of labeled Darija Audios
I have also added 3 phonetic units to this model ڭ, ڤ and پ. For example: ڭال , ڤيديو , پودكاست
## Usage
The model can be used directly (without a language model) as follows:
```python
import librosa
import torch
from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2ForCTC, Wav2Vec2Processor, TrainingArguments, Wav2Vec2FeatureExtractor, Trainer
tokenizer = Wav2Vec2CTCTokenizer("./vocab.json", unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|")
processor = Wav2Vec2Processor.from_pretrained('boumehdi/wav2vec2-large-xlsr-moroccan-darija', tokenizer=tokenizer)
model=Wav2Vec2ForCTC.from_pretrained('boumehdi/wav2vec2-large-xlsr-moroccan-darija')
# load the audio data (use your own wav file here!)
input_audio, sr = librosa.load('file.wav', sr=16000)
# tokenize
input_values = processor(input_audio, return_tensors="pt", padding=True).input_values
# retrieve logits
logits = model(input_values).logits
tokens=torch.argmax(logits, axis=-1)
# decode using n-gram
transcription = tokenizer.batch_decode(tokens)
# print the output
print(transcription)
```
Here's the output: ڭالت ليا هاد السيد هادا ما كاينش بحالو
## Evaluation & Previous works
-v2 (fine-tuned on 8.5 hours of audio + replaced أ and ى and إ with ا as it creates a lot of problems + tried to standardize the Moroccan Darija)
**Wer**: 44.30
**Training Loss**: 12.99
**Validation Loss**: 36.93
#############################################################
-v1 (fine-tuned on 6 hours of audio)
**Wer**: 49.68
**Training Loss**: 9.88
**Validation Loss**: 45.24
## Future Work
I am currently working on improving this model. The new model will be available soon.
email: [email protected]
|