Initial import
Browse files- .gitignore +1 -0
- handler.py +25 -0
- requirements.txt +2 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
venv
|
handler.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
import torch
|
3 |
+
from transformers import BitsAndBytesConfig, pipeline
|
4 |
+
|
5 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
6 |
+
|
7 |
+
|
8 |
+
class EndpointHandler():
|
9 |
+
def __init__(self, path=""):
|
10 |
+
quantization_config = BitsAndBytesConfig(
|
11 |
+
load_in_4bit=True,
|
12 |
+
bnb_4bit_compute_dtype=torch.float16
|
13 |
+
)
|
14 |
+
# self.pipeline = pipeline("image-to-text", model="llava-hf/llava-1.5-7b-hf",
|
15 |
+
# model_kwargs={"quantization_config": quantization_config})
|
16 |
+
|
17 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
18 |
+
print(data)
|
19 |
+
inputs = data.pop("inputs", data)
|
20 |
+
image = data.pop("image", None)
|
21 |
+
prompt = data.pop("prompt", None)
|
22 |
+
# outputs = self.pipeline(image, prompt=prompt, generate_kwargs={
|
23 |
+
# "max_new_tokens": 200})
|
24 |
+
# return {"caption": outputs[0]["generated_text"]}
|
25 |
+
return {"image": image, "prompt": prompt}
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
transformers==4.38.2
|
2 |
+
bitsandbytes
|