File size: 10,638 Bytes
d48f2bf a545a4b d48f2bf a477325 d48f2bf 00ca6e1 d48f2bf d474da6 d48f2bf d474da6 d48f2bf d474da6 d48f2bf d474da6 d48f2bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
---
language:
- pt
- en
license: cc
tags:
- text-generation-inference
- transformers
- mistral
- gguf
- brazil
- brasil
- portuguese
base_model: mistralai/Mistral-7B-Instruct-v0.2
pipeline_tag: text-generation
metrics:
- name: assin2_rte f1_macro
type: assin2_rte
value: 90.13
- name: assin2_rte acc
type: assin2_rte
value: 90.16
- name: assin2_sts pearson
type: assin2_sts
value: 71.51
- name: assin2_sts mse
type: assin2_sts
value: 68.03
- name: bluex acc
type: bluex
value: 47.98
- name: enem acc
type: enem
value: 58.43
- name: faquad_nli f1_macro
type: faquad_nli
value: 64.24
- name: faquad_nli acc
type: faquad_nli
value: 67.69
- name: hatebr_offensive_binary f1_macro
type: hatebr_offensive_binary
value: 83.61
- name: hatebr_offensive_binary acc
type: hatebr_offensive_binary
value: 83.71
- name: oab_exams acc
type: oab_exams
value: 38.41
- name: portuguese_hate_speech_binary f1_macro
type: portuguese_hate_speech_binary
value: 61.87
- name: portuguese_hate_speech_binary acc
type: portuguese_hate_speech_binary
value: 63.22
---
# Cabra Mistral 7b v2
<img src="https://uploads-ssl.webflow.com/65f77c0240ae1c68f8192771/660b1a4d574293d8a1ce48ca_cabra1.png" width="400" height="400">
Esse modelo é um finetune do [Mistral 7b Instruct 0.2](https://huggingface.co/mistralai/mistral-7b-instruct-v0.2) com o dataset interno Cabra 10k. Esse modelo é optimizado para português. Ele apresenta melhoria em varios benchmarks brasileiros em comparação com o modelo base.
**Exprimente o nosso demo aqui: [CabraChat](https://huggingface.co/spaces/nicolasdec/CabraChat).**
**Conheça os nossos outros modelos: [Cabra](https://huggingface.co/collections/botbot-ai/models-6604c2069ceef04f834ba99b).**
## Detalhes do Modelo
### Modelo: Mistral 7b Instruct 0.2
Mistral-7B-v0.1 é um modelo de transformador, com as seguintes escolhas arquitetônicas:
- Grouped-Query Attention
- Sliding-Window Attention
- Byte-fallback BPE tokenizer
### dataset: Cabra 10k
Dataset interno para finetuning. Vamos lançar em breve.
### Quantização / GGUF
Colocamos diversas versões (GGUF) quantanizadas no branch "quantanization".
### Exemplo
```
<s> [INST] who is Elon Musk? [/INST]Elon Musk é um empreendedor, inventor e capitalista americano. Ele é o fundador, CEO e CTO da SpaceX, CEO da Neuralink e fundador do The Boring Company. Musk também é o proprietário do Twitter.</s>
```
### Paramentros de trainamento
```
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 3
```
### Framework
- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.14.6
- Tokenizers 0.15.2
## Uso
O modelo é destinado, por agora, a fins de pesquisa. As áreas e tarefas de pesquisa possíveis incluem:
- Pesquisa sobre modelos gerativos.
- Investigação e compreensão das limitações e viéses de modelos gerativos.
**Proibido para uso comercial. Somente Pesquisa.**
### Evals
| Tasks | Version | Filter | n-shot | Metric | Value | Stderr |
|-----------------------------|---------|----------------------|--------|----------|--------|---------|
| assin2_rte | 1.1 | all | 15 | f1_macro | 0.9013 | ± 0.0043 |
| | | all | 15 | acc | 0.9016 | ± 0.0043 |
| assin2_sts | 1.1 | all | 15 | pearson | 0.7151 | ± 0.0074 |
| | | all | 15 | mse | 0.6803 | ± N/A |
| bluex | 1.1 | all | 3 | acc | 0.4798 | ± 0.0107 |
| | | exam_id__USP_2019 | 3 | acc | 0.375 | ± 0.044 |
| | | exam_id__USP_2021 | 3 | acc | 0.3462 | ± 0.0382 |
| | | exam_id__USP_2020 | 3 | acc | 0.4107 | ± 0.0379 |
| | | exam_id__UNICAMP_2018| 3 | acc | 0.4815 | ± 0.0392 |
| | | exam_id__UNICAMP_2020| 3 | acc | 0.4727 | ± 0.0389 |
| | | exam_id__UNICAMP_2021_1| 3 | acc | 0.413 | ± 0.0418 |
| | | exam_id__UNICAMP_2019| 3 | acc | 0.42 | ± 0.0404 |
| | | exam_id__UNICAMP_2022| 3 | acc | 0.5897 | ± 0.0456 |
| | | exam_id__USP_2022 | 3 | acc | 0.449 | ± 0.041 |
| | | exam_id__USP_2024 | 3 | acc | 0.6341 | ± 0.0434 |
| | | exam_id__UNICAMP_2024| 3 | acc | 0.6 | ± 0.0422 |
| | | exam_id__USP_2023 | 3 | acc | 0.5455 | ± 0.0433 |
| | | exam_id__UNICAMP_2023| 3 | acc | 0.5349 | ± 0.044 |
| | | exam_id__USP_2018 | 3 | acc | 0.4815 | ± 0.0393 |
| | | exam_id__UNICAMP_2021_2| 3 | acc | 0.5098 | ± 0.0403 |
| enem | 1.1 | all | 3 | acc | 0.5843 | ± 0.0075 |
| | | exam_id__2010 | 3 | acc | 0.5726 | ± 0.0264 |
| | | exam_id__2009 | 3 | acc | 0.6 | ± 0.0264 |
| | | exam_id__2014 | 3 | acc | 0.633 | ± 0.0268 |
| | | exam_id__2022 | 3 | acc | 0.6165 | ± 0.0243 |
| | | exam_id__2012 | 3 | acc | 0.569 | ± 0.0265 |
| | | exam_id__2013 | 3 | acc | 0.5833 | ± 0.0274 |
| | | exam_id__2016_2 | 3 | acc | 0.5203 | ± 0.026 |
| | | exam_id__2011 | 3 | acc | 0.6325 | ± 0.0257 |
| | | exam_id__2023 | 3 | acc | 0.5778 | ± 0.0246 |
| | | exam_id__2016 | 3 | acc | 0.595 | ± 0.0258 |
| | | exam_id__2017 | 3 | acc | 0.5517 | ± 0.0267 |
| | | exam_id__2015 | 3 | acc | 0.563 | ± 0.0261 |
| faquad_nli | 1.1 | all | 15 | f1_macro | 0.6424 | ± 0.0138 |
| | | all | 15 | acc | 0.6769 | ± 0.013 |
| hatebr_offensive_binary | 1 | all | 25 | f1_macro | 0.8361 | ± 0.007 |
| | | all | 25 | acc | 0.8371 | ± 0.007 |
| oab_exams | 1.5 | all | 3 | acc | 0.3841 | ± 0.006 |
| | | exam_id__2011-03 | 3 | acc | 0.3636 | ± 0.0279 |
| | | exam_id__2014-14 | 3 | acc | 0.475 | ± 0.0323 |
| | | exam_id__2016-21 | 3 | acc | 0.4125 | ± 0.0318 |
| | | exam_id__2012-06a | 3 | acc | 0.3875 | ± 0.0313 |
| | | exam_id__2014-13 | 3 | acc | 0.325 | ± 0.0303 |
| | | exam_id__2015-16 | 3 | acc | 0.425 | ± 0.032 |
| | | exam_id__2010-02 | 3 | acc | 0.4 | ± 0.0283 |
| | | exam_id__2012-08 | 3 | acc | 0.3875 | ± 0.0314 |
| | | exam_id__2011-05 | 3 | acc | 0.375 | ± 0.0312 |
| | | exam_id__2017-22 | 3 | acc | 0.4 | ± 0.0316 |
| | | exam_id__2018-25 | 3 | acc | 0.4125 | ± 0.0318 |
| | | exam_id__2012-09 | 3 | acc | 0.3636 | ± 0.0317 |
| | | exam_id__2017-24 | 3 | acc | 0.3375 | ± 0.0304 |
| | | exam_id__2016-20a | 3 | acc | 0.3125 | ± 0.0299 |
| | | exam_id__2012-06 | 3 | acc | 0.425 | ± 0.0318 |
| | | exam_id__2013-12 | 3 | acc | 0.4375 | ± 0.0321 |
| | | exam_id__2016-20 | 3 | acc | 0.45 | ± 0.0322 |
| | | exam_id__2013-11 | 3 | acc | 0.4 | ± 0.0316 |
| | | exam_id__2015-17 | 3 | acc | 0.4231 | ± 0.0323 |
| | | exam_id__2015-18 | 3 | acc | 0.4 | ± 0.0316 |
| | | exam_id__2017-23 | 3 | acc | 0.35 | ± 0.0308 |
| | | exam_id__2010-01 | 3 | acc | 0.2471 | ± 0.0271 |
| | | exam_id__2011-04 | 3 | acc | 0.375 | ± 0.0313 |
| | | exam_id__2016-19 | 3 | acc | 0.4103 | ± 0.0321 |
| | | exam_id__2013-10 | 3 | acc | 0.3375 | ± 0.0305 |
| | | exam_id__2012-07 | 3 | acc | 0.3625 | ± 0.031 |
| | | exam_id__2014-15 | 3 | acc | 0.3846 | ± 0.0318 |
| portuguese_hate_speech_binary | 1 | all | 25 | f1_macro | 0.6187 | ± 0.0119 |
| | | all | 25 | acc | 0.6322 | ± 0.0117 |
|