update handler to load predefined 4-bit model
Browse files- handler.py +3 -16
handler.py
CHANGED
|
@@ -4,19 +4,7 @@ from typing import Any
|
|
| 4 |
|
| 5 |
class EndpointHandler():
|
| 6 |
def __init__(self, path=""):
|
| 7 |
-
|
| 8 |
-
bits_and_bytes_config = BitsAndBytesConfig(
|
| 9 |
-
load_in_4bit=True,
|
| 10 |
-
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 11 |
-
)
|
| 12 |
-
quantization_config = bits_and_bytes_config if torch.cuda.is_available() else None
|
| 13 |
-
|
| 14 |
-
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 15 |
-
self.model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 16 |
-
path,
|
| 17 |
-
quantization_config=quantization_config,
|
| 18 |
-
device_map="auto",
|
| 19 |
-
)
|
| 20 |
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
| 21 |
|
| 22 |
def __call__(self, data: dict[str, Any]) -> dict[str, Any]:
|
|
@@ -41,8 +29,8 @@ class EndpointHandler():
|
|
| 41 |
return_attention_mask=False,
|
| 42 |
)
|
| 43 |
|
| 44 |
-
# Ensure the input_ids and the model are on the
|
| 45 |
-
input_ids = tokens.input_ids.to(
|
| 46 |
|
| 47 |
# Gradient calculation is not needed for inference.
|
| 48 |
with torch.no_grad():
|
|
@@ -53,4 +41,3 @@ class EndpointHandler():
|
|
| 53 |
|
| 54 |
generated_text = self.tokenizer.decode(output[0], skip_special_tokens=True)
|
| 55 |
return {"generated_text": generated_text}
|
| 56 |
-
|
|
|
|
| 4 |
|
| 5 |
class EndpointHandler():
|
| 6 |
def __init__(self, path=""):
|
| 7 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(f"{path}/4-bit", device_map="auto")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
| 9 |
|
| 10 |
def __call__(self, data: dict[str, Any]) -> dict[str, Any]:
|
|
|
|
| 29 |
return_attention_mask=False,
|
| 30 |
)
|
| 31 |
|
| 32 |
+
# Ensure the input_ids and the model are both on the GPU to prevent errors.
|
| 33 |
+
input_ids = tokens.input_ids.to("cuda")
|
| 34 |
|
| 35 |
# Gradient calculation is not needed for inference.
|
| 36 |
with torch.no_grad():
|
|
|
|
| 41 |
|
| 42 |
generated_text = self.tokenizer.decode(output[0], skip_special_tokens=True)
|
| 43 |
return {"generated_text": generated_text}
|
|
|