Using my own version of anytrading
Browse files- __pycache__/trading_env.cpython-38.pyc +0 -0
- fin_rl_PPO_v1.ipynb +0 -0
- trading_env.py +261 -0
__pycache__/trading_env.cpython-38.pyc
ADDED
Binary file (6.43 kB). View file
|
|
fin_rl_PPO_v1.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
trading_env.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gym
|
2 |
+
from gym import spaces
|
3 |
+
from gym.utils import seeding
|
4 |
+
import numpy as np
|
5 |
+
from enum import Enum
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
|
8 |
+
|
9 |
+
class Actions(Enum):
|
10 |
+
Sell = 0
|
11 |
+
Buy = 1
|
12 |
+
Do_nothing = 2
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
class TradingEnv(gym.Env):
|
17 |
+
|
18 |
+
metadata = {'render.modes': ['human']}
|
19 |
+
|
20 |
+
def __init__(self, df, window_size, frame_bound):
|
21 |
+
assert df.ndim == 2
|
22 |
+
|
23 |
+
assert len(frame_bound) == 2
|
24 |
+
self.frame_bound = frame_bound
|
25 |
+
|
26 |
+
self.seed()
|
27 |
+
self.df = df
|
28 |
+
self.window_size = window_size
|
29 |
+
self.prices, self.signal_features = self._process_data()
|
30 |
+
self.shape = (window_size, self.signal_features.shape[1])
|
31 |
+
|
32 |
+
# spaces
|
33 |
+
self.action_space = spaces.Discrete(len(Actions))
|
34 |
+
self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape=self.shape, dtype=np.float64)
|
35 |
+
|
36 |
+
# episode
|
37 |
+
self._start_tick = self.window_size
|
38 |
+
self._end_tick = len(self.prices) - 1
|
39 |
+
self._done = None
|
40 |
+
self._current_tick = None
|
41 |
+
self._last_trade_tick = None
|
42 |
+
self._position = None
|
43 |
+
self._position_history = None
|
44 |
+
self._total_reward = None
|
45 |
+
self._total_profit = None
|
46 |
+
self._first_rendering = None
|
47 |
+
self.history = None
|
48 |
+
|
49 |
+
# fees
|
50 |
+
self.trade_fee_bid_percent = 0.0005 # unit
|
51 |
+
self.trade_fee_ask_percent = 0.0005 # unit
|
52 |
+
|
53 |
+
|
54 |
+
def seed(self, seed=None):
|
55 |
+
self.np_random, seed = seeding.np_random(seed)
|
56 |
+
return [seed]
|
57 |
+
|
58 |
+
|
59 |
+
def reset(self):
|
60 |
+
self._done = False
|
61 |
+
self._current_tick = self._start_tick
|
62 |
+
self._last_trade_tick = self._current_tick - 1
|
63 |
+
self._position = 0
|
64 |
+
self._position_history = (self.window_size * [None])
|
65 |
+
# self._position_history = (self.window_size * [None]) + [self._position]
|
66 |
+
self._total_reward = 0.
|
67 |
+
self._total_profit = 0.
|
68 |
+
self.history = {}
|
69 |
+
return self._get_observation()
|
70 |
+
|
71 |
+
|
72 |
+
def _calculate_reward(self, action):
|
73 |
+
step_reward = 0
|
74 |
+
|
75 |
+
current_price = self.prices[self._current_tick]
|
76 |
+
last_price = self.prices[self._current_tick - 1]
|
77 |
+
price_diff = current_price - last_price
|
78 |
+
|
79 |
+
# OPEN BUY - 1
|
80 |
+
if action == Actions.Buy.value and self._position == 0:
|
81 |
+
self._position = 1
|
82 |
+
step_reward += price_diff
|
83 |
+
self._last_trade_tick = self._current_tick - 1
|
84 |
+
self._position_history.append(1)
|
85 |
+
|
86 |
+
elif action == Actions.Buy.value and self._position > 0:
|
87 |
+
step_reward += 0
|
88 |
+
self._position_history.append(-1)
|
89 |
+
# CLOSE SELL - 4
|
90 |
+
elif action == Actions.Buy.value and self._position < 0:
|
91 |
+
self._position = 0
|
92 |
+
step_reward += -1 * (self.prices[self._current_tick -1] - self.prices[self._last_trade_tick])
|
93 |
+
self._total_profit += step_reward
|
94 |
+
self._position_history.append(4)
|
95 |
+
|
96 |
+
# OPEN SELL - 3
|
97 |
+
elif action == Actions.Sell.value and self._position == 0:
|
98 |
+
self._position = -1
|
99 |
+
step_reward += -1 * price_diff
|
100 |
+
self._last_trade_tick = self._current_tick - 1
|
101 |
+
self._position_history.append(3)
|
102 |
+
# CLOSE BUY - 2
|
103 |
+
elif action == Actions.Sell.value and self._position > 0:
|
104 |
+
self._position = 0
|
105 |
+
step_reward += self.prices[self._current_tick -1] - self.prices[self._last_trade_tick]
|
106 |
+
self._total_profit += step_reward
|
107 |
+
self._position_history.append(2)
|
108 |
+
elif action == Actions.Sell.value and self._position < 0:
|
109 |
+
step_reward += 0
|
110 |
+
self._position_history.append(-1)
|
111 |
+
|
112 |
+
# DO NOTHING - 0
|
113 |
+
elif action == Actions.Do_nothing.value and self._position > 0:
|
114 |
+
step_reward += price_diff
|
115 |
+
self._position_history.append(0)
|
116 |
+
elif action == Actions.Do_nothing.value and self._position < 0:
|
117 |
+
step_reward += -1 * price_diff
|
118 |
+
self._position_history.append(0)
|
119 |
+
elif action == Actions.Do_nothing.value and self._position == 0:
|
120 |
+
step_reward += -1 * abs(price_diff)
|
121 |
+
self._position_history.append(0)
|
122 |
+
|
123 |
+
return step_reward
|
124 |
+
|
125 |
+
|
126 |
+
def step(self, action):
|
127 |
+
self._done = False
|
128 |
+
self._current_tick += 1
|
129 |
+
|
130 |
+
if self._current_tick == self._end_tick:
|
131 |
+
self._done = True
|
132 |
+
|
133 |
+
step_reward = self._calculate_reward(action)
|
134 |
+
self._total_reward += step_reward
|
135 |
+
|
136 |
+
observation = self._get_observation()
|
137 |
+
info = dict(
|
138 |
+
total_reward = self._total_reward,
|
139 |
+
total_profit = self._total_profit,
|
140 |
+
position = self._position
|
141 |
+
)
|
142 |
+
self._update_history(info)
|
143 |
+
|
144 |
+
return observation, step_reward, self._done, info
|
145 |
+
|
146 |
+
|
147 |
+
def _get_observation(self):
|
148 |
+
return self.signal_features[(self._current_tick-self.window_size+1):self._current_tick+1]
|
149 |
+
|
150 |
+
|
151 |
+
def _update_history(self, info):
|
152 |
+
if not self.history:
|
153 |
+
self.history = {key: [] for key in info.keys()}
|
154 |
+
|
155 |
+
for key, value in info.items():
|
156 |
+
self.history[key].append(value)
|
157 |
+
|
158 |
+
|
159 |
+
def render(self, mode='human'):
|
160 |
+
window_ticks = np.arange(len(self._position_history))
|
161 |
+
plt.plot(self.prices)
|
162 |
+
|
163 |
+
open_buy = []
|
164 |
+
close_buy = []
|
165 |
+
open_sell = []
|
166 |
+
close_sell = []
|
167 |
+
do_nothing = []
|
168 |
+
|
169 |
+
for i, tick in enumerate(window_ticks):
|
170 |
+
if self._position_history[i] is None:
|
171 |
+
continue
|
172 |
+
|
173 |
+
if self._position_history[i] == 1:
|
174 |
+
open_buy.append(tick)
|
175 |
+
elif self._position_history[i] == 2 :
|
176 |
+
close_buy.append(tick)
|
177 |
+
elif self._position_history[i] == 3 :
|
178 |
+
open_sell.append(tick)
|
179 |
+
elif self._position_history[i] == 4 :
|
180 |
+
close_sell.append(tick)
|
181 |
+
elif self._position_history[i] == 0 :
|
182 |
+
do_nothing.append(tick)
|
183 |
+
|
184 |
+
plt.plot(open_buy, self.prices[open_buy], 'go', marker="^")
|
185 |
+
plt.plot(close_buy, self.prices[close_buy], 'go', marker="v")
|
186 |
+
plt.plot(open_sell, self.prices[open_sell], 'ro', marker="v")
|
187 |
+
plt.plot(close_sell, self.prices[close_sell], 'ro', marker="^")
|
188 |
+
|
189 |
+
plt.plot(do_nothing, self.prices[do_nothing], 'yo')
|
190 |
+
|
191 |
+
plt.suptitle(
|
192 |
+
"Total Reward: %.6f" % self._total_reward + ' ~ ' +
|
193 |
+
"Total Profit: %.6f" % self._total_profit
|
194 |
+
)
|
195 |
+
|
196 |
+
|
197 |
+
def close(self):
|
198 |
+
plt.close()
|
199 |
+
|
200 |
+
|
201 |
+
def save_rendering(self, filepath):
|
202 |
+
plt.savefig(filepath)
|
203 |
+
|
204 |
+
|
205 |
+
def pause_rendering(self):
|
206 |
+
plt.show()
|
207 |
+
|
208 |
+
|
209 |
+
def _process_data(self):
|
210 |
+
prices = self.df.loc[:, 'Close'].to_numpy()
|
211 |
+
|
212 |
+
prices[self.frame_bound[0] - self.window_size] # validate index (TODO: Improve validation)
|
213 |
+
prices = prices[self.frame_bound[0]-self.window_size:self.frame_bound[1]]
|
214 |
+
|
215 |
+
diff = np.insert(np.diff(prices), 0, 0)
|
216 |
+
signal_features = np.column_stack((prices, diff))
|
217 |
+
|
218 |
+
return prices, signal_features
|
219 |
+
|
220 |
+
|
221 |
+
def _update_profit(self, action):
|
222 |
+
trade = False
|
223 |
+
if ((action == Actions.Buy.value and self._position == Positions.Short) or
|
224 |
+
(action == Actions.Sell.value and self._position == Positions.Long)):
|
225 |
+
trade = True
|
226 |
+
|
227 |
+
if trade or self._done:
|
228 |
+
current_price = self.prices[self._current_tick]
|
229 |
+
last_trade_price = self.prices[self._last_trade_tick]
|
230 |
+
|
231 |
+
if self._position == Positions.Long:
|
232 |
+
shares = (self._total_profit * (1 - self.trade_fee_ask_percent)) / last_trade_price
|
233 |
+
self._total_profit = (shares * (1 - self.trade_fee_bid_percent)) * current_price
|
234 |
+
|
235 |
+
|
236 |
+
def max_possible_profit(self):
|
237 |
+
current_tick = self._start_tick
|
238 |
+
last_trade_tick = current_tick - 1
|
239 |
+
profit = 1.
|
240 |
+
|
241 |
+
while current_tick <= self._end_tick:
|
242 |
+
position = None
|
243 |
+
if self.prices[current_tick] < self.prices[current_tick - 1]:
|
244 |
+
while (current_tick <= self._end_tick and
|
245 |
+
self.prices[current_tick] < self.prices[current_tick - 1]):
|
246 |
+
current_tick += 1
|
247 |
+
position = Positions.Short
|
248 |
+
else:
|
249 |
+
while (current_tick <= self._end_tick and
|
250 |
+
self.prices[current_tick] >= self.prices[current_tick - 1]):
|
251 |
+
current_tick += 1
|
252 |
+
position = Positions.Long
|
253 |
+
|
254 |
+
if position == Positions.Long:
|
255 |
+
current_price = self.prices[current_tick - 1]
|
256 |
+
last_trade_price = self.prices[last_trade_tick]
|
257 |
+
shares = profit / last_trade_price
|
258 |
+
profit = shares * current_price
|
259 |
+
last_trade_tick = current_tick - 1
|
260 |
+
|
261 |
+
return profit
|