bofenghuang
commited on
Commit
•
0c6e02d
1
Parent(s):
2e3e0bc
Update README.md
Browse files
README.md
CHANGED
@@ -1,11 +1,10 @@
|
|
1 |
---
|
2 |
-
language:
|
3 |
-
- fr
|
4 |
pipeline_tag: text-generation
|
5 |
-
library_name: transformers
|
6 |
inference: false
|
7 |
tags:
|
8 |
- LLM
|
|
|
9 |
- llama
|
10 |
- llama-2
|
11 |
---
|
@@ -14,11 +13,11 @@ tags:
|
|
14 |
<img src="https://huggingface.co/bofenghuang/vigogne-2-7b-chat/resolve/v2.0/logo_v2.jpg" alt="Vigogne" style="width: 30%; min-width: 300px; display: block; margin: auto;">
|
15 |
</p>
|
16 |
|
17 |
-
# Vigogne-2-7B-Chat-V2.0: A Llama-2
|
18 |
|
19 |
-
Vigogne-2-7B-Chat-V2.0 is a French chat LLM, based on [LLaMA-2-7B](https://ai.meta.com/llama), optimized to generate helpful and coherent responses in
|
20 |
|
21 |
-
Check out our [blog](https://github.com/bofenghuang/vigogne/blob/main/blogs/2023-08-17-vigogne-chat-v2_0.md) and [GitHub repository](https://github.com/bofenghuang/vigogne) for more information.
|
22 |
|
23 |
**Usage and License Notices**: Vigogne-2-7B-Chat-V2.0 follows Llama-2's [usage policy](https://ai.meta.com/llama/use-policy). A significant portion of the training data is distilled from GPT-3.5-Turbo and GPT-4, kindly use it cautiously to avoid any violations of OpenAI's [terms of use](https://openai.com/policies/terms-of-use).
|
24 |
|
@@ -27,14 +26,57 @@ Check out our [blog](https://github.com/bofenghuang/vigogne/blob/main/blogs/2023
|
|
27 |
All previous versions are accessible through branches.
|
28 |
|
29 |
- **V1.0**: Trained on 420K chat data.
|
30 |
-
- **V2.0**: Trained on 520K data. Check out our [blog](https://github.com/bofenghuang/vigogne/blob/main/blogs/2023-08-17-vigogne-chat-v2_0.md) for more details.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
## Usage
|
33 |
|
34 |
```python
|
|
|
35 |
import torch
|
36 |
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, TextStreamer
|
37 |
-
from vigogne.preprocess import generate_inference_chat_prompt
|
38 |
|
39 |
model_name_or_path = "bofenghuang/vigogne-2-7b-chat"
|
40 |
revision = "v2.0"
|
@@ -45,18 +87,22 @@ model = AutoModelForCausalLM.from_pretrained(model_name_or_path, revision=revisi
|
|
45 |
streamer = TextStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
46 |
|
47 |
|
48 |
-
def
|
49 |
-
|
50 |
-
|
51 |
-
temperature=0.
|
52 |
-
top_p=1.0,
|
53 |
-
top_k=0,
|
54 |
-
repetition_penalty=1.1,
|
55 |
-
max_new_tokens=1024,
|
56 |
**kwargs,
|
57 |
):
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
60 |
input_length = input_ids.shape[1]
|
61 |
|
62 |
generated_outputs = model.generate(
|
@@ -68,23 +114,32 @@ def infer(
|
|
68 |
top_k=top_k,
|
69 |
repetition_penalty=repetition_penalty,
|
70 |
max_new_tokens=max_new_tokens,
|
71 |
-
|
72 |
-
pad_token_id=tokenizer.pad_token_id,
|
73 |
**kwargs,
|
74 |
),
|
75 |
streamer=streamer,
|
76 |
return_dict_in_generate=True,
|
77 |
)
|
|
|
78 |
generated_tokens = generated_outputs.sequences[0, input_length:]
|
79 |
generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
80 |
-
return generated_text
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
|
84 |
-
|
85 |
```
|
86 |
|
87 |
-
You can utilize the Google Colab Notebook below for inferring with the Vigogne chat models.
|
88 |
|
89 |
<a href="https://colab.research.google.com/github/bofenghuang/vigogne/blob/main/notebooks/infer_chat.ipynb" target="_blank"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
|
90 |
|
|
|
1 |
---
|
2 |
+
language: fr
|
|
|
3 |
pipeline_tag: text-generation
|
|
|
4 |
inference: false
|
5 |
tags:
|
6 |
- LLM
|
7 |
+
- finetuned
|
8 |
- llama
|
9 |
- llama-2
|
10 |
---
|
|
|
13 |
<img src="https://huggingface.co/bofenghuang/vigogne-2-7b-chat/resolve/v2.0/logo_v2.jpg" alt="Vigogne" style="width: 30%; min-width: 300px; display: block; margin: auto;">
|
14 |
</p>
|
15 |
|
16 |
+
# Vigogne-2-7B-Chat-V2.0: A Llama-2-based French Chat LLM
|
17 |
|
18 |
+
Vigogne-2-7B-Chat-V2.0 is a French chat LLM, based on [LLaMA-2-7B](https://ai.meta.com/llama), optimized to generate helpful and coherent responses in conversations with users.
|
19 |
|
20 |
+
Check out our [release blog](https://github.com/bofenghuang/vigogne/blob/main/blogs/2023-08-17-vigogne-chat-v2_0.md) and [GitHub repository](https://github.com/bofenghuang/vigogne) for more information.
|
21 |
|
22 |
**Usage and License Notices**: Vigogne-2-7B-Chat-V2.0 follows Llama-2's [usage policy](https://ai.meta.com/llama/use-policy). A significant portion of the training data is distilled from GPT-3.5-Turbo and GPT-4, kindly use it cautiously to avoid any violations of OpenAI's [terms of use](https://openai.com/policies/terms-of-use).
|
23 |
|
|
|
26 |
All previous versions are accessible through branches.
|
27 |
|
28 |
- **V1.0**: Trained on 420K chat data.
|
29 |
+
- **V2.0**: Trained on 520K data. Check out our [release blog](https://github.com/bofenghuang/vigogne/blob/main/blogs/2023-08-17-vigogne-chat-v2_0.md) for more details.
|
30 |
+
|
31 |
+
|
32 |
+
## Quantized Models
|
33 |
+
|
34 |
+
The quantized versions of this model are generously provided by [TheBloke](https://huggingface.co/TheBloke)!
|
35 |
+
|
36 |
+
- AWQ: [TheBloke/Vigogne-2-7B-Chat-AWQ](https://huggingface.co/TheBloke/Vigogne-2-7B-Chat-AWQ)
|
37 |
+
- GTPQ: [TheBloke/Vigogne-2-7B-Chat-GPTQ](https://huggingface.co/TheBloke/Vigogne-2-7B-Chat-GPTQ)
|
38 |
+
- GGUF: [TheBloke/Vigogne-2-7B-Chat-GGUF](https://huggingface.co/TheBloke/Vigogne-2-7B-Chat-GGUF)
|
39 |
+
|
40 |
+
## Prompt Template
|
41 |
+
|
42 |
+
We utilized prefix tokens `<user>` and `<assistant>` to distinguish between user and assistant utterances.
|
43 |
+
|
44 |
+
You can apply this formatting using the [chat template](https://huggingface.co/docs/transformers/main/chat_templating) through the `apply_chat_template()` method.
|
45 |
+
|
46 |
+
```python
|
47 |
+
from transformers import AutoTokenizer
|
48 |
+
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained("bofenghuang/vigogne-2-7b-chat")
|
50 |
+
|
51 |
+
conversation = [
|
52 |
+
{"role": "user", "content": "Bonjour ! Comment ça va aujourd'hui ?"},
|
53 |
+
{"role": "assistant", "content": "Bonjour ! Je suis une IA, donc je n'ai pas de sentiments, mais je suis prêt à vous aider. Comment puis-je vous assister aujourd'hui ?"},
|
54 |
+
{"role": "user", "content": "Quelle est la hauteur de la Tour Eiffel ?"},
|
55 |
+
{"role": "assistant", "content": "La Tour Eiffel mesure environ 330 mètres de hauteur."},
|
56 |
+
{"role": "user", "content": "Comment monter en haut ?"},
|
57 |
+
]
|
58 |
+
|
59 |
+
print(tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True))
|
60 |
+
```
|
61 |
+
|
62 |
+
You will get
|
63 |
+
|
64 |
+
```
|
65 |
+
<s><|system|>: Vous êtes l'assistant IA nommé Vigogne, créé par Zaion Lab (https://zaion.ai). Vous suivez extrêmement bien les instructions. Aidez autant que vous le pouvez.
|
66 |
+
<|user|>: Bonjour ! Comment ça va aujourd'hui ?
|
67 |
+
<|assistant|>: Bonjour ! Je suis une IA, donc je n'ai pas de sentiments, mais je suis prêt à vous aider. Comment puis-je vous assister aujourd'hui ?</s>
|
68 |
+
<|user|>: Quelle est la hauteur de la Tour Eiffel ?
|
69 |
+
<|assistant|>: La Tour Eiffel mesure environ 330 mètres de hauteur.</s>
|
70 |
+
<|user|>: Comment monter en haut ?
|
71 |
+
<|assistant|>:
|
72 |
+
```
|
73 |
|
74 |
## Usage
|
75 |
|
76 |
```python
|
77 |
+
from typing import Dict, List, Optional
|
78 |
import torch
|
79 |
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, TextStreamer
|
|
|
80 |
|
81 |
model_name_or_path = "bofenghuang/vigogne-2-7b-chat"
|
82 |
revision = "v2.0"
|
|
|
87 |
streamer = TextStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
88 |
|
89 |
|
90 |
+
def chat(
|
91 |
+
query: str,
|
92 |
+
history: Optional[List[Dict]] = None,
|
93 |
+
temperature: float = 0.7,
|
94 |
+
top_p: float = 1.0,
|
95 |
+
top_k: float = 0,
|
96 |
+
repetition_penalty: float = 1.1,
|
97 |
+
max_new_tokens: int = 1024,
|
98 |
**kwargs,
|
99 |
):
|
100 |
+
if history is None:
|
101 |
+
history = []
|
102 |
+
|
103 |
+
history.append({"role": "user", "content": query})
|
104 |
+
|
105 |
+
input_ids = tokenizer.apply_chat_template(history, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
106 |
input_length = input_ids.shape[1]
|
107 |
|
108 |
generated_outputs = model.generate(
|
|
|
114 |
top_k=top_k,
|
115 |
repetition_penalty=repetition_penalty,
|
116 |
max_new_tokens=max_new_tokens,
|
117 |
+
pad_token_id=tokenizer.eos_token_id,
|
|
|
118 |
**kwargs,
|
119 |
),
|
120 |
streamer=streamer,
|
121 |
return_dict_in_generate=True,
|
122 |
)
|
123 |
+
|
124 |
generated_tokens = generated_outputs.sequences[0, input_length:]
|
125 |
generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
|
|
126 |
|
127 |
+
history.append({"role": "assistant", "content": generated_text})
|
128 |
+
|
129 |
+
return generated_text, history
|
130 |
+
|
131 |
+
|
132 |
+
# 1st round
|
133 |
+
response, history = chat("Un escargot parcourt 100 mètres en 5 heures. Quelle est sa vitesse ?", history=None)
|
134 |
+
|
135 |
+
# 2nd round
|
136 |
+
response, history = chat("Quand il peut dépasser le lapin ?", history=history)
|
137 |
|
138 |
+
# 3rd round
|
139 |
+
response, history = chat("Écris une histoire imaginative qui met en scène une compétition de course entre un escargot et un lapin.", history=history)
|
140 |
```
|
141 |
|
142 |
+
You can also utilize the Google Colab Notebook below for inferring with the Vigogne chat models.
|
143 |
|
144 |
<a href="https://colab.research.google.com/github/bofenghuang/vigogne/blob/main/notebooks/infer_chat.ipynb" target="_blank"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
|
145 |
|