bobyres commited on
Commit
e0c6113
1 Parent(s): 71ff5be

Upload folder using huggingface_hub

Browse files
Files changed (42) hide show
  1. README.md +159 -0
  2. adapter_config.json +34 -0
  3. adapter_model.bin +3 -0
  4. added_tokens.json +3 -0
  5. checkpoint-117/README.md +204 -0
  6. checkpoint-117/adapter_config.json +34 -0
  7. checkpoint-117/adapter_model.safetensors +3 -0
  8. checkpoint-117/optimizer.pt +3 -0
  9. checkpoint-117/rng_state.pth +3 -0
  10. checkpoint-117/scheduler.pt +3 -0
  11. checkpoint-117/trainer_state.json +1000 -0
  12. checkpoint-117/training_args.bin +3 -0
  13. checkpoint-39/README.md +204 -0
  14. checkpoint-39/adapter_config.json +34 -0
  15. checkpoint-39/adapter_model.safetensors +3 -0
  16. checkpoint-39/optimizer.pt +3 -0
  17. checkpoint-39/rng_state.pth +3 -0
  18. checkpoint-39/scheduler.pt +3 -0
  19. checkpoint-39/trainer_state.json +350 -0
  20. checkpoint-39/training_args.bin +3 -0
  21. checkpoint-78/README.md +204 -0
  22. checkpoint-78/adapter_config.json +34 -0
  23. checkpoint-78/adapter_model.safetensors +3 -0
  24. checkpoint-78/optimizer.pt +3 -0
  25. checkpoint-78/rng_state.pth +3 -0
  26. checkpoint-78/scheduler.pt +3 -0
  27. checkpoint-78/trainer_state.json +679 -0
  28. checkpoint-78/training_args.bin +3 -0
  29. config.json +44 -0
  30. merged/added_tokens.json +3 -0
  31. merged/config.json +30 -0
  32. merged/generation_config.json +10 -0
  33. merged/pytorch_model-00001-of-00003.bin +3 -0
  34. merged/pytorch_model-00002-of-00003.bin +3 -0
  35. merged/pytorch_model-00003-of-00003.bin +3 -0
  36. merged/pytorch_model.bin.index.json +298 -0
  37. merged/special_tokens_map.json +24 -0
  38. merged/tokenizer.model +3 -0
  39. merged/tokenizer_config.json +52 -0
  40. special_tokens_map.json +24 -0
  41. tokenizer.model +3 -0
  42. tokenizer_config.json +52 -0
README.md ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ tags:
4
+ - generated_from_trainer
5
+ base_model: bofenghuang/vigogne-2-7b-instruct
6
+ model-index:
7
+ - name: qlora-out
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
15
+ <details><summary>See axolotl config</summary>
16
+
17
+ axolotl version: `0.4.0`
18
+ ```yaml
19
+ base_model: bofenghuang/vigogne-2-7b-instruct
20
+ base_model_config: bofenghuang/vigogne-2-7b-instruct
21
+ model_type: LlamaForCausalLM
22
+ tokenizer_type: LlamaTokenizer
23
+ is_llama_derived_model: true
24
+
25
+ load_in_8bit: false
26
+ load_in_4bit: true
27
+ strict: false
28
+
29
+ datasets:
30
+ - path: bobyres/LabelV01
31
+ type: alpaca
32
+
33
+ dataset_prepared_path: last_run_prepared
34
+ val_set_size: 0.05
35
+ output_dir: ./qlora-out
36
+ adapter: qlora
37
+ lora_model_dir:
38
+
39
+ sequence_len: 4096
40
+ sample_packing: false
41
+ pad_to_sequence_len: true
42
+
43
+ lora_r: 32
44
+ lora_alpha: 16
45
+ lora_dropout: 0.05
46
+ lora_target_modules:
47
+ lora_target_linear: true
48
+ lora_fan_in_fan_out:
49
+
50
+ wandb_project: "finetune_labelisation_v011"
51
+ wandb_entity:
52
+ wandb_watch:
53
+ wandb_run_id:
54
+ wandb_log_model: "checkpoint"
55
+
56
+ gradient_accumulation_steps: 1
57
+ micro_batch_size: 1
58
+ num_epochs: 3
59
+ optimizer: paged_adamw_32bit
60
+ lr_scheduler: cosine
61
+ learning_rate: 0.0002
62
+
63
+ train_on_inputs: false
64
+ group_by_length: false
65
+ bf16: true
66
+ fp16: false
67
+ tf32: false
68
+
69
+ gradient_checkpointing: true
70
+ early_stopping_patience:
71
+ resume_from_checkpoint:
72
+ local_rank:
73
+ logging_steps: 1
74
+ xformers_attention:
75
+ flash_attention: true
76
+
77
+ warmup_steps: 10
78
+ eval_steps: 0.05
79
+ eval_table_size:
80
+ save_steps:
81
+ debug:
82
+ deepspeed:
83
+ weight_decay: 0.0
84
+ fsdp:
85
+ fsdp_config:
86
+ special_tokens:
87
+ bos_token: "<s>"
88
+ eos_token: "</s>"
89
+ unk_token: "<unk>"
90
+
91
+ ```
92
+
93
+ </details><br>
94
+
95
+ # qlora-out
96
+
97
+ This model is a fine-tuned version of [bofenghuang/vigogne-2-7b-instruct](https://huggingface.co/bofenghuang/vigogne-2-7b-instruct) on the None dataset.
98
+ It achieves the following results on the evaluation set:
99
+ - Loss: 0.6592
100
+
101
+ ## Model description
102
+
103
+ More information needed
104
+
105
+ ## Intended uses & limitations
106
+
107
+ More information needed
108
+
109
+ ## Training and evaluation data
110
+
111
+ More information needed
112
+
113
+ ## Training procedure
114
+
115
+ ### Training hyperparameters
116
+
117
+ The following hyperparameters were used during training:
118
+ - learning_rate: 0.0002
119
+ - train_batch_size: 1
120
+ - eval_batch_size: 1
121
+ - seed: 42
122
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
123
+ - lr_scheduler_type: cosine
124
+ - lr_scheduler_warmup_steps: 10
125
+ - num_epochs: 3
126
+
127
+ ### Training results
128
+
129
+ | Training Loss | Epoch | Step | Validation Loss |
130
+ |:-------------:|:-----:|:----:|:---------------:|
131
+ | 1.0134 | 0.03 | 1 | 1.0981 |
132
+ | 0.972 | 0.15 | 6 | 1.0736 |
133
+ | 0.7982 | 0.31 | 12 | 0.8548 |
134
+ | 0.6944 | 0.46 | 18 | 0.7151 |
135
+ | 0.6808 | 0.62 | 24 | 0.6943 |
136
+ | 0.6763 | 0.77 | 30 | 0.6821 |
137
+ | 0.67 | 0.92 | 36 | 0.6764 |
138
+ | 0.6424 | 1.08 | 42 | 0.6730 |
139
+ | 0.6552 | 1.23 | 48 | 0.6780 |
140
+ | 0.6527 | 1.38 | 54 | 0.6690 |
141
+ | 0.6624 | 1.54 | 60 | 0.6632 |
142
+ | 0.6228 | 1.69 | 66 | 0.6625 |
143
+ | 0.6447 | 1.85 | 72 | 0.6617 |
144
+ | 0.6409 | 2.0 | 78 | 0.6599 |
145
+ | 0.6356 | 2.15 | 84 | 0.6589 |
146
+ | 0.648 | 2.31 | 90 | 0.6584 |
147
+ | 0.6254 | 2.46 | 96 | 0.6593 |
148
+ | 0.6167 | 2.62 | 102 | 0.6596 |
149
+ | 0.6451 | 2.77 | 108 | 0.6590 |
150
+ | 0.6144 | 2.92 | 114 | 0.6592 |
151
+
152
+
153
+ ### Framework versions
154
+
155
+ - PEFT 0.11.0
156
+ - Transformers 4.39.0.dev0
157
+ - Pytorch 2.0.1+cu118
158
+ - Datasets 2.17.1
159
+ - Tokenizers 0.15.0
adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "bofenghuang/vigogne-2-7b-instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "down_proj",
25
+ "o_proj",
26
+ "gate_proj",
27
+ "k_proj",
28
+ "q_proj",
29
+ "up_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f639f1af3f25b7351008689e4b9606f7f72fcfa0448341d7b0ca903a24be8bfb
3
+ size 844282325
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<pad>": 32000
3
+ }
checkpoint-117/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: bofenghuang/vigogne-2-7b-instruct
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.11.0
checkpoint-117/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "bofenghuang/vigogne-2-7b-instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "down_proj",
25
+ "o_proj",
26
+ "gate_proj",
27
+ "k_proj",
28
+ "q_proj",
29
+ "up_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-117/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6acc8e3befe5ecbdc8e002ce4f98fb71de8ed145a725538f2284269452f8a3f8
3
+ size 844180648
checkpoint-117/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d25b2a4c0f6aca2aa0addb815dcd969553f4eb5031a4ddf81b131fc98dc55e4
3
+ size 639908165
checkpoint-117/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:924eb59ef423e249e235207616d4c9a0f37d2845336ee2273a901a150b556efd
3
+ size 14575
checkpoint-117/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce1c56cfee47dad49f17989a23abbcf9690fd7b649d25374cdccb77510dc1d23
3
+ size 627
checkpoint-117/trainer_state.json ADDED
@@ -0,0 +1,1000 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.0,
5
+ "eval_steps": 6,
6
+ "global_step": 117,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03,
13
+ "grad_norm": 0.08957596868276596,
14
+ "learning_rate": 2e-05,
15
+ "loss": 1.0134,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.03,
20
+ "eval_loss": 1.0981205701828003,
21
+ "eval_runtime": 2.5128,
22
+ "eval_samples_per_second": 1.194,
23
+ "eval_steps_per_second": 1.194,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.05,
28
+ "grad_norm": 0.07771213352680206,
29
+ "learning_rate": 4e-05,
30
+ "loss": 0.9545,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.08,
35
+ "grad_norm": 0.1224137470126152,
36
+ "learning_rate": 6e-05,
37
+ "loss": 1.1733,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.1,
42
+ "grad_norm": 0.09190034121274948,
43
+ "learning_rate": 8e-05,
44
+ "loss": 0.9954,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.13,
49
+ "grad_norm": 0.08263542503118515,
50
+ "learning_rate": 0.0001,
51
+ "loss": 0.9486,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.15,
56
+ "grad_norm": 0.09250061959028244,
57
+ "learning_rate": 0.00012,
58
+ "loss": 0.972,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.15,
63
+ "eval_loss": 1.0735869407653809,
64
+ "eval_runtime": 2.5357,
65
+ "eval_samples_per_second": 1.183,
66
+ "eval_steps_per_second": 1.183,
67
+ "step": 6
68
+ },
69
+ {
70
+ "epoch": 0.18,
71
+ "grad_norm": 0.1398034691810608,
72
+ "learning_rate": 0.00014,
73
+ "loss": 1.0445,
74
+ "step": 7
75
+ },
76
+ {
77
+ "epoch": 0.21,
78
+ "grad_norm": 0.0993918851017952,
79
+ "learning_rate": 0.00016,
80
+ "loss": 0.9169,
81
+ "step": 8
82
+ },
83
+ {
84
+ "epoch": 0.23,
85
+ "grad_norm": 0.07937725633382797,
86
+ "learning_rate": 0.00018,
87
+ "loss": 0.8462,
88
+ "step": 9
89
+ },
90
+ {
91
+ "epoch": 0.26,
92
+ "grad_norm": 0.10001373291015625,
93
+ "learning_rate": 0.0002,
94
+ "loss": 0.8708,
95
+ "step": 10
96
+ },
97
+ {
98
+ "epoch": 0.28,
99
+ "grad_norm": 0.1337287873029709,
100
+ "learning_rate": 0.00019995690062269984,
101
+ "loss": 0.86,
102
+ "step": 11
103
+ },
104
+ {
105
+ "epoch": 0.31,
106
+ "grad_norm": 0.11684636771678925,
107
+ "learning_rate": 0.00019982763964192585,
108
+ "loss": 0.7982,
109
+ "step": 12
110
+ },
111
+ {
112
+ "epoch": 0.31,
113
+ "eval_loss": 0.8548387885093689,
114
+ "eval_runtime": 2.5536,
115
+ "eval_samples_per_second": 1.175,
116
+ "eval_steps_per_second": 1.175,
117
+ "step": 12
118
+ },
119
+ {
120
+ "epoch": 0.33,
121
+ "grad_norm": 0.12103456258773804,
122
+ "learning_rate": 0.0001996123284790336,
123
+ "loss": 0.7906,
124
+ "step": 13
125
+ },
126
+ {
127
+ "epoch": 0.36,
128
+ "grad_norm": 0.1426106095314026,
129
+ "learning_rate": 0.00019931115272956405,
130
+ "loss": 0.7825,
131
+ "step": 14
132
+ },
133
+ {
134
+ "epoch": 0.38,
135
+ "grad_norm": 0.12367941439151764,
136
+ "learning_rate": 0.0001989243720032624,
137
+ "loss": 0.7341,
138
+ "step": 15
139
+ },
140
+ {
141
+ "epoch": 0.41,
142
+ "grad_norm": 0.10154826194047928,
143
+ "learning_rate": 0.00019845231970029773,
144
+ "loss": 0.7064,
145
+ "step": 16
146
+ },
147
+ {
148
+ "epoch": 0.44,
149
+ "grad_norm": 0.13628405332565308,
150
+ "learning_rate": 0.0001978954027238763,
151
+ "loss": 0.6988,
152
+ "step": 17
153
+ },
154
+ {
155
+ "epoch": 0.46,
156
+ "grad_norm": 0.11276472359895706,
157
+ "learning_rate": 0.0001972541011294959,
158
+ "loss": 0.6944,
159
+ "step": 18
160
+ },
161
+ {
162
+ "epoch": 0.46,
163
+ "eval_loss": 0.7151015400886536,
164
+ "eval_runtime": 2.5734,
165
+ "eval_samples_per_second": 1.166,
166
+ "eval_steps_per_second": 1.166,
167
+ "step": 18
168
+ },
169
+ {
170
+ "epoch": 0.49,
171
+ "grad_norm": 0.13381372392177582,
172
+ "learning_rate": 0.00019652896771114414,
173
+ "loss": 0.6956,
174
+ "step": 19
175
+ },
176
+ {
177
+ "epoch": 0.51,
178
+ "grad_norm": 0.11248588562011719,
179
+ "learning_rate": 0.00019572062752479683,
180
+ "loss": 0.7155,
181
+ "step": 20
182
+ },
183
+ {
184
+ "epoch": 0.54,
185
+ "grad_norm": 0.17762312293052673,
186
+ "learning_rate": 0.00019482977734962753,
187
+ "loss": 0.7357,
188
+ "step": 21
189
+ },
190
+ {
191
+ "epoch": 0.56,
192
+ "grad_norm": 0.10546916723251343,
193
+ "learning_rate": 0.00019385718508739262,
194
+ "loss": 0.6691,
195
+ "step": 22
196
+ },
197
+ {
198
+ "epoch": 0.59,
199
+ "grad_norm": 0.3150898516178131,
200
+ "learning_rate": 0.00019280368910050942,
201
+ "loss": 0.7167,
202
+ "step": 23
203
+ },
204
+ {
205
+ "epoch": 0.62,
206
+ "grad_norm": 0.13151158392429352,
207
+ "learning_rate": 0.00019167019748939846,
208
+ "loss": 0.6808,
209
+ "step": 24
210
+ },
211
+ {
212
+ "epoch": 0.62,
213
+ "eval_loss": 0.6942548751831055,
214
+ "eval_runtime": 2.5831,
215
+ "eval_samples_per_second": 1.161,
216
+ "eval_steps_per_second": 1.161,
217
+ "step": 24
218
+ },
219
+ {
220
+ "epoch": 0.64,
221
+ "grad_norm": 0.14906296133995056,
222
+ "learning_rate": 0.00019045768730971196,
223
+ "loss": 0.6762,
224
+ "step": 25
225
+ },
226
+ {
227
+ "epoch": 0.67,
228
+ "grad_norm": 0.19484123587608337,
229
+ "learning_rate": 0.00018916720373012426,
230
+ "loss": 0.6854,
231
+ "step": 26
232
+ },
233
+ {
234
+ "epoch": 0.69,
235
+ "grad_norm": 0.12819896638393402,
236
+ "learning_rate": 0.00018779985913140924,
237
+ "loss": 0.6873,
238
+ "step": 27
239
+ },
240
+ {
241
+ "epoch": 0.72,
242
+ "grad_norm": 0.21385614573955536,
243
+ "learning_rate": 0.00018635683214758214,
244
+ "loss": 0.6874,
245
+ "step": 28
246
+ },
247
+ {
248
+ "epoch": 0.74,
249
+ "grad_norm": 0.12286895513534546,
250
+ "learning_rate": 0.0001848393666499315,
251
+ "loss": 0.6843,
252
+ "step": 29
253
+ },
254
+ {
255
+ "epoch": 0.77,
256
+ "grad_norm": 0.08534862101078033,
257
+ "learning_rate": 0.00018324877067481783,
258
+ "loss": 0.6763,
259
+ "step": 30
260
+ },
261
+ {
262
+ "epoch": 0.77,
263
+ "eval_loss": 0.6821426749229431,
264
+ "eval_runtime": 2.5911,
265
+ "eval_samples_per_second": 1.158,
266
+ "eval_steps_per_second": 1.158,
267
+ "step": 30
268
+ },
269
+ {
270
+ "epoch": 0.79,
271
+ "grad_norm": 0.17990928888320923,
272
+ "learning_rate": 0.0001815864152961624,
273
+ "loss": 0.6789,
274
+ "step": 31
275
+ },
276
+ {
277
+ "epoch": 0.82,
278
+ "grad_norm": 0.12137839943170547,
279
+ "learning_rate": 0.0001798537334435986,
280
+ "loss": 0.6877,
281
+ "step": 32
282
+ },
283
+ {
284
+ "epoch": 0.85,
285
+ "grad_norm": 0.10240964591503143,
286
+ "learning_rate": 0.00017805221866730458,
287
+ "loss": 0.6725,
288
+ "step": 33
289
+ },
290
+ {
291
+ "epoch": 0.87,
292
+ "grad_norm": 0.14333295822143555,
293
+ "learning_rate": 0.00017618342385058145,
294
+ "loss": 0.6745,
295
+ "step": 34
296
+ },
297
+ {
298
+ "epoch": 0.9,
299
+ "grad_norm": 0.0904482752084732,
300
+ "learning_rate": 0.00017424895987128722,
301
+ "loss": 0.6894,
302
+ "step": 35
303
+ },
304
+ {
305
+ "epoch": 0.92,
306
+ "grad_norm": 0.11753042787313461,
307
+ "learning_rate": 0.00017225049421328023,
308
+ "loss": 0.67,
309
+ "step": 36
310
+ },
311
+ {
312
+ "epoch": 0.92,
313
+ "eval_loss": 0.6763580441474915,
314
+ "eval_runtime": 2.5955,
315
+ "eval_samples_per_second": 1.156,
316
+ "eval_steps_per_second": 1.156,
317
+ "step": 36
318
+ },
319
+ {
320
+ "epoch": 0.95,
321
+ "grad_norm": 0.13719823956489563,
322
+ "learning_rate": 0.00017018974952906884,
323
+ "loss": 0.6589,
324
+ "step": 37
325
+ },
326
+ {
327
+ "epoch": 0.97,
328
+ "grad_norm": 0.1040361225605011,
329
+ "learning_rate": 0.0001680685021549063,
330
+ "loss": 0.666,
331
+ "step": 38
332
+ },
333
+ {
334
+ "epoch": 1.0,
335
+ "grad_norm": 0.07594098895788193,
336
+ "learning_rate": 0.00016588858057961113,
337
+ "loss": 0.645,
338
+ "step": 39
339
+ },
340
+ {
341
+ "epoch": 1.03,
342
+ "grad_norm": 0.08139798045158386,
343
+ "learning_rate": 0.0001636518638684325,
344
+ "loss": 0.6542,
345
+ "step": 40
346
+ },
347
+ {
348
+ "epoch": 1.05,
349
+ "grad_norm": 0.07313457876443863,
350
+ "learning_rate": 0.0001613602800433194,
351
+ "loss": 0.6458,
352
+ "step": 41
353
+ },
354
+ {
355
+ "epoch": 1.08,
356
+ "grad_norm": 0.07903215289115906,
357
+ "learning_rate": 0.00015901580442098968,
358
+ "loss": 0.6424,
359
+ "step": 42
360
+ },
361
+ {
362
+ "epoch": 1.08,
363
+ "eval_loss": 0.6730008125305176,
364
+ "eval_runtime": 2.5989,
365
+ "eval_samples_per_second": 1.154,
366
+ "eval_steps_per_second": 1.154,
367
+ "step": 42
368
+ },
369
+ {
370
+ "epoch": 1.1,
371
+ "grad_norm": 0.09322352707386017,
372
+ "learning_rate": 0.00015662045791023173,
373
+ "loss": 0.6567,
374
+ "step": 43
375
+ },
376
+ {
377
+ "epoch": 1.13,
378
+ "grad_norm": 0.07249985635280609,
379
+ "learning_rate": 0.00015417630526990615,
380
+ "loss": 0.6384,
381
+ "step": 44
382
+ },
383
+ {
384
+ "epoch": 1.15,
385
+ "grad_norm": 0.07686451077461243,
386
+ "learning_rate": 0.0001516854533291494,
387
+ "loss": 0.665,
388
+ "step": 45
389
+ },
390
+ {
391
+ "epoch": 1.18,
392
+ "grad_norm": 0.07324113696813583,
393
+ "learning_rate": 0.00014915004917131344,
394
+ "loss": 0.6297,
395
+ "step": 46
396
+ },
397
+ {
398
+ "epoch": 1.21,
399
+ "grad_norm": 0.09203895926475525,
400
+ "learning_rate": 0.00014657227828320635,
401
+ "loss": 0.6539,
402
+ "step": 47
403
+ },
404
+ {
405
+ "epoch": 1.23,
406
+ "grad_norm": 0.09338624030351639,
407
+ "learning_rate": 0.00014395436267123016,
408
+ "loss": 0.6552,
409
+ "step": 48
410
+ },
411
+ {
412
+ "epoch": 1.23,
413
+ "eval_loss": 0.6780009269714355,
414
+ "eval_runtime": 2.6045,
415
+ "eval_samples_per_second": 1.152,
416
+ "eval_steps_per_second": 1.152,
417
+ "step": 48
418
+ },
419
+ {
420
+ "epoch": 1.26,
421
+ "grad_norm": 0.0812142863869667,
422
+ "learning_rate": 0.00014129855894603886,
423
+ "loss": 0.6319,
424
+ "step": 49
425
+ },
426
+ {
427
+ "epoch": 1.28,
428
+ "grad_norm": 0.19316132366657257,
429
+ "learning_rate": 0.00013860715637736818,
430
+ "loss": 0.7,
431
+ "step": 50
432
+ },
433
+ {
434
+ "epoch": 1.31,
435
+ "grad_norm": 0.10698059946298599,
436
+ "learning_rate": 0.0001358824749207136,
437
+ "loss": 0.6725,
438
+ "step": 51
439
+ },
440
+ {
441
+ "epoch": 1.33,
442
+ "grad_norm": 0.14100198447704315,
443
+ "learning_rate": 0.00013312686321755761,
444
+ "loss": 0.6766,
445
+ "step": 52
446
+ },
447
+ {
448
+ "epoch": 1.36,
449
+ "grad_norm": 0.09599179029464722,
450
+ "learning_rate": 0.00013034269657086992,
451
+ "loss": 0.645,
452
+ "step": 53
453
+ },
454
+ {
455
+ "epoch": 1.38,
456
+ "grad_norm": 0.08999059349298477,
457
+ "learning_rate": 0.000127532374897626,
458
+ "loss": 0.6527,
459
+ "step": 54
460
+ },
461
+ {
462
+ "epoch": 1.38,
463
+ "eval_loss": 0.6689873337745667,
464
+ "eval_runtime": 2.6108,
465
+ "eval_samples_per_second": 1.149,
466
+ "eval_steps_per_second": 1.149,
467
+ "step": 54
468
+ },
469
+ {
470
+ "epoch": 1.41,
471
+ "grad_norm": 0.13835830986499786,
472
+ "learning_rate": 0.00012469832066010843,
473
+ "loss": 0.6561,
474
+ "step": 55
475
+ },
476
+ {
477
+ "epoch": 1.44,
478
+ "grad_norm": 0.10695886611938477,
479
+ "learning_rate": 0.00012184297677777463,
480
+ "loss": 0.6668,
481
+ "step": 56
482
+ },
483
+ {
484
+ "epoch": 1.46,
485
+ "grad_norm": 0.0739368349313736,
486
+ "learning_rate": 0.00011896880452149077,
487
+ "loss": 0.643,
488
+ "step": 57
489
+ },
490
+ {
491
+ "epoch": 1.49,
492
+ "grad_norm": 0.21791452169418335,
493
+ "learning_rate": 0.00011607828139194683,
494
+ "loss": 0.6768,
495
+ "step": 58
496
+ },
497
+ {
498
+ "epoch": 1.51,
499
+ "grad_norm": 0.06241246312856674,
500
+ "learning_rate": 0.00011317389898408189,
501
+ "loss": 0.6252,
502
+ "step": 59
503
+ },
504
+ {
505
+ "epoch": 1.54,
506
+ "grad_norm": 0.1302526593208313,
507
+ "learning_rate": 0.00011025816083936036,
508
+ "loss": 0.6624,
509
+ "step": 60
510
+ },
511
+ {
512
+ "epoch": 1.54,
513
+ "eval_loss": 0.6632375121116638,
514
+ "eval_runtime": 2.6043,
515
+ "eval_samples_per_second": 1.152,
516
+ "eval_steps_per_second": 1.152,
517
+ "step": 60
518
+ },
519
+ {
520
+ "epoch": 1.56,
521
+ "grad_norm": 0.11702455580234528,
522
+ "learning_rate": 0.0001073335802877504,
523
+ "loss": 0.6522,
524
+ "step": 61
525
+ },
526
+ {
527
+ "epoch": 1.59,
528
+ "grad_norm": 0.08904154598712921,
529
+ "learning_rate": 0.00010440267828126478,
530
+ "loss": 0.6472,
531
+ "step": 62
532
+ },
533
+ {
534
+ "epoch": 1.62,
535
+ "grad_norm": 0.08021406084299088,
536
+ "learning_rate": 0.00010146798122093166,
537
+ "loss": 0.6279,
538
+ "step": 63
539
+ },
540
+ {
541
+ "epoch": 1.64,
542
+ "grad_norm": 0.07384659349918365,
543
+ "learning_rate": 9.853201877906836e-05,
544
+ "loss": 0.6262,
545
+ "step": 64
546
+ },
547
+ {
548
+ "epoch": 1.67,
549
+ "grad_norm": 0.06457240134477615,
550
+ "learning_rate": 9.559732171873523e-05,
551
+ "loss": 0.64,
552
+ "step": 65
553
+ },
554
+ {
555
+ "epoch": 1.69,
556
+ "grad_norm": 0.07967618852853775,
557
+ "learning_rate": 9.266641971224963e-05,
558
+ "loss": 0.6228,
559
+ "step": 66
560
+ },
561
+ {
562
+ "epoch": 1.69,
563
+ "eval_loss": 0.6625072360038757,
564
+ "eval_runtime": 2.6047,
565
+ "eval_samples_per_second": 1.152,
566
+ "eval_steps_per_second": 1.152,
567
+ "step": 66
568
+ },
569
+ {
570
+ "epoch": 1.72,
571
+ "grad_norm": 0.09555868804454803,
572
+ "learning_rate": 8.974183916063968e-05,
573
+ "loss": 0.635,
574
+ "step": 67
575
+ },
576
+ {
577
+ "epoch": 1.74,
578
+ "grad_norm": 0.07187359035015106,
579
+ "learning_rate": 8.682610101591814e-05,
580
+ "loss": 0.6277,
581
+ "step": 68
582
+ },
583
+ {
584
+ "epoch": 1.77,
585
+ "grad_norm": 0.091610848903656,
586
+ "learning_rate": 8.392171860805319e-05,
587
+ "loss": 0.6649,
588
+ "step": 69
589
+ },
590
+ {
591
+ "epoch": 1.79,
592
+ "grad_norm": 0.065833680331707,
593
+ "learning_rate": 8.103119547850924e-05,
594
+ "loss": 0.6262,
595
+ "step": 70
596
+ },
597
+ {
598
+ "epoch": 1.82,
599
+ "grad_norm": 0.09459354728460312,
600
+ "learning_rate": 7.815702322222538e-05,
601
+ "loss": 0.6359,
602
+ "step": 71
603
+ },
604
+ {
605
+ "epoch": 1.85,
606
+ "grad_norm": 0.06780053675174713,
607
+ "learning_rate": 7.530167933989161e-05,
608
+ "loss": 0.6447,
609
+ "step": 72
610
+ },
611
+ {
612
+ "epoch": 1.85,
613
+ "eval_loss": 0.6616933941841125,
614
+ "eval_runtime": 2.607,
615
+ "eval_samples_per_second": 1.151,
616
+ "eval_steps_per_second": 1.151,
617
+ "step": 72
618
+ },
619
+ {
620
+ "epoch": 1.87,
621
+ "grad_norm": 0.0954224094748497,
622
+ "learning_rate": 7.246762510237403e-05,
623
+ "loss": 0.6636,
624
+ "step": 73
625
+ },
626
+ {
627
+ "epoch": 1.9,
628
+ "grad_norm": 0.0937703400850296,
629
+ "learning_rate": 6.96573034291301e-05,
630
+ "loss": 0.6381,
631
+ "step": 74
632
+ },
633
+ {
634
+ "epoch": 1.92,
635
+ "grad_norm": 0.10935033112764359,
636
+ "learning_rate": 6.687313678244242e-05,
637
+ "loss": 0.628,
638
+ "step": 75
639
+ },
640
+ {
641
+ "epoch": 1.95,
642
+ "grad_norm": 0.08154003322124481,
643
+ "learning_rate": 6.411752507928642e-05,
644
+ "loss": 0.6386,
645
+ "step": 76
646
+ },
647
+ {
648
+ "epoch": 1.97,
649
+ "grad_norm": 0.12196218967437744,
650
+ "learning_rate": 6.139284362263185e-05,
651
+ "loss": 0.6317,
652
+ "step": 77
653
+ },
654
+ {
655
+ "epoch": 2.0,
656
+ "grad_norm": 0.11538293212652206,
657
+ "learning_rate": 5.870144105396118e-05,
658
+ "loss": 0.6409,
659
+ "step": 78
660
+ },
661
+ {
662
+ "epoch": 2.0,
663
+ "eval_loss": 0.6598871350288391,
664
+ "eval_runtime": 2.6073,
665
+ "eval_samples_per_second": 1.151,
666
+ "eval_steps_per_second": 1.151,
667
+ "step": 78
668
+ },
669
+ {
670
+ "epoch": 2.03,
671
+ "grad_norm": 0.06518127769231796,
672
+ "learning_rate": 5.604563732876989e-05,
673
+ "loss": 0.6178,
674
+ "step": 79
675
+ },
676
+ {
677
+ "epoch": 2.05,
678
+ "grad_norm": 0.08378639072179794,
679
+ "learning_rate": 5.342772171679364e-05,
680
+ "loss": 0.6462,
681
+ "step": 80
682
+ },
683
+ {
684
+ "epoch": 2.08,
685
+ "grad_norm": 0.10916124284267426,
686
+ "learning_rate": 5.084995082868658e-05,
687
+ "loss": 0.6232,
688
+ "step": 81
689
+ },
690
+ {
691
+ "epoch": 2.1,
692
+ "grad_norm": 0.06721071153879166,
693
+ "learning_rate": 4.8314546670850594e-05,
694
+ "loss": 0.6251,
695
+ "step": 82
696
+ },
697
+ {
698
+ "epoch": 2.13,
699
+ "grad_norm": 0.07324420660734177,
700
+ "learning_rate": 4.58236947300939e-05,
701
+ "loss": 0.6463,
702
+ "step": 83
703
+ },
704
+ {
705
+ "epoch": 2.15,
706
+ "grad_norm": 0.058844875544309616,
707
+ "learning_rate": 4.3379542089768296e-05,
708
+ "loss": 0.6356,
709
+ "step": 84
710
+ },
711
+ {
712
+ "epoch": 2.15,
713
+ "eval_loss": 0.6589328646659851,
714
+ "eval_runtime": 2.6016,
715
+ "eval_samples_per_second": 1.153,
716
+ "eval_steps_per_second": 1.153,
717
+ "step": 84
718
+ },
719
+ {
720
+ "epoch": 2.18,
721
+ "grad_norm": 0.06990176439285278,
722
+ "learning_rate": 4.0984195579010357e-05,
723
+ "loss": 0.6094,
724
+ "step": 85
725
+ },
726
+ {
727
+ "epoch": 2.21,
728
+ "grad_norm": 0.06396197527647018,
729
+ "learning_rate": 3.863971995668062e-05,
730
+ "loss": 0.6133,
731
+ "step": 86
732
+ },
733
+ {
734
+ "epoch": 2.23,
735
+ "grad_norm": 0.08108431100845337,
736
+ "learning_rate": 3.634813613156753e-05,
737
+ "loss": 0.6282,
738
+ "step": 87
739
+ },
740
+ {
741
+ "epoch": 2.26,
742
+ "grad_norm": 0.07657407969236374,
743
+ "learning_rate": 3.41114194203889e-05,
744
+ "loss": 0.6153,
745
+ "step": 88
746
+ },
747
+ {
748
+ "epoch": 2.28,
749
+ "grad_norm": 0.10315506905317307,
750
+ "learning_rate": 3.193149784509375e-05,
751
+ "loss": 0.6127,
752
+ "step": 89
753
+ },
754
+ {
755
+ "epoch": 2.31,
756
+ "grad_norm": 0.08609894663095474,
757
+ "learning_rate": 2.9810250470931177e-05,
758
+ "loss": 0.648,
759
+ "step": 90
760
+ },
761
+ {
762
+ "epoch": 2.31,
763
+ "eval_loss": 0.6583991050720215,
764
+ "eval_runtime": 2.6062,
765
+ "eval_samples_per_second": 1.151,
766
+ "eval_steps_per_second": 1.151,
767
+ "step": 90
768
+ },
769
+ {
770
+ "epoch": 2.33,
771
+ "grad_norm": 0.11702079325914383,
772
+ "learning_rate": 2.77495057867198e-05,
773
+ "loss": 0.6091,
774
+ "step": 91
775
+ },
776
+ {
777
+ "epoch": 2.36,
778
+ "grad_norm": 0.07838897407054901,
779
+ "learning_rate": 2.57510401287128e-05,
780
+ "loss": 0.6157,
781
+ "step": 92
782
+ },
783
+ {
784
+ "epoch": 2.38,
785
+ "grad_norm": 0.08897637575864792,
786
+ "learning_rate": 2.381657614941858e-05,
787
+ "loss": 0.6243,
788
+ "step": 93
789
+ },
790
+ {
791
+ "epoch": 2.41,
792
+ "grad_norm": 0.08890639245510101,
793
+ "learning_rate": 2.1947781332695404e-05,
794
+ "loss": 0.6217,
795
+ "step": 94
796
+ },
797
+ {
798
+ "epoch": 2.44,
799
+ "grad_norm": 0.07756870985031128,
800
+ "learning_rate": 2.0146266556401405e-05,
801
+ "loss": 0.6292,
802
+ "step": 95
803
+ },
804
+ {
805
+ "epoch": 2.46,
806
+ "grad_norm": 0.0875290259718895,
807
+ "learning_rate": 1.8413584703837615e-05,
808
+ "loss": 0.6254,
809
+ "step": 96
810
+ },
811
+ {
812
+ "epoch": 2.46,
813
+ "eval_loss": 0.6592622399330139,
814
+ "eval_runtime": 2.6098,
815
+ "eval_samples_per_second": 1.15,
816
+ "eval_steps_per_second": 1.15,
817
+ "step": 96
818
+ },
819
+ {
820
+ "epoch": 2.49,
821
+ "grad_norm": 0.09376902878284454,
822
+ "learning_rate": 1.6751229325182195e-05,
823
+ "loss": 0.6332,
824
+ "step": 97
825
+ },
826
+ {
827
+ "epoch": 2.51,
828
+ "grad_norm": 0.07304065674543381,
829
+ "learning_rate": 1.5160633350068509e-05,
830
+ "loss": 0.6078,
831
+ "step": 98
832
+ },
833
+ {
834
+ "epoch": 2.54,
835
+ "grad_norm": 0.08924753963947296,
836
+ "learning_rate": 1.3643167852417893e-05,
837
+ "loss": 0.6466,
838
+ "step": 99
839
+ },
840
+ {
841
+ "epoch": 2.56,
842
+ "grad_norm": 0.07718851417303085,
843
+ "learning_rate": 1.2200140868590759e-05,
844
+ "loss": 0.6239,
845
+ "step": 100
846
+ },
847
+ {
848
+ "epoch": 2.59,
849
+ "grad_norm": 0.087765634059906,
850
+ "learning_rate": 1.0832796269875756e-05,
851
+ "loss": 0.6506,
852
+ "step": 101
853
+ },
854
+ {
855
+ "epoch": 2.62,
856
+ "grad_norm": 0.08246306329965591,
857
+ "learning_rate": 9.542312690288036e-06,
858
+ "loss": 0.6167,
859
+ "step": 102
860
+ },
861
+ {
862
+ "epoch": 2.62,
863
+ "eval_loss": 0.6595852375030518,
864
+ "eval_runtime": 2.6048,
865
+ "eval_samples_per_second": 1.152,
866
+ "eval_steps_per_second": 1.152,
867
+ "step": 102
868
+ },
869
+ {
870
+ "epoch": 2.64,
871
+ "grad_norm": 0.0889851450920105,
872
+ "learning_rate": 8.329802510601559e-06,
873
+ "loss": 0.6521,
874
+ "step": 103
875
+ },
876
+ {
877
+ "epoch": 2.67,
878
+ "grad_norm": 0.0997273325920105,
879
+ "learning_rate": 7.196310899490577e-06,
880
+ "loss": 0.6336,
881
+ "step": 104
882
+ },
883
+ {
884
+ "epoch": 2.69,
885
+ "grad_norm": 0.07945340126752853,
886
+ "learning_rate": 6.142814912607409e-06,
887
+ "loss": 0.61,
888
+ "step": 105
889
+ },
890
+ {
891
+ "epoch": 2.72,
892
+ "grad_norm": 0.08767939358949661,
893
+ "learning_rate": 5.170222650372469e-06,
894
+ "loss": 0.624,
895
+ "step": 106
896
+ },
897
+ {
898
+ "epoch": 2.74,
899
+ "grad_norm": 0.08095201849937439,
900
+ "learning_rate": 4.279372475203181e-06,
901
+ "loss": 0.6329,
902
+ "step": 107
903
+ },
904
+ {
905
+ "epoch": 2.77,
906
+ "grad_norm": 0.09164229035377502,
907
+ "learning_rate": 3.471032288855869e-06,
908
+ "loss": 0.6451,
909
+ "step": 108
910
+ },
911
+ {
912
+ "epoch": 2.77,
913
+ "eval_loss": 0.6590184569358826,
914
+ "eval_runtime": 2.6071,
915
+ "eval_samples_per_second": 1.151,
916
+ "eval_steps_per_second": 1.151,
917
+ "step": 108
918
+ },
919
+ {
920
+ "epoch": 2.79,
921
+ "grad_norm": 0.10341291129589081,
922
+ "learning_rate": 2.7458988705041157e-06,
923
+ "loss": 0.6233,
924
+ "step": 109
925
+ },
926
+ {
927
+ "epoch": 2.82,
928
+ "grad_norm": 0.07704948633909225,
929
+ "learning_rate": 2.104597276123721e-06,
930
+ "loss": 0.6221,
931
+ "step": 110
932
+ },
933
+ {
934
+ "epoch": 2.85,
935
+ "grad_norm": 0.0802367627620697,
936
+ "learning_rate": 1.547680299702281e-06,
937
+ "loss": 0.625,
938
+ "step": 111
939
+ },
940
+ {
941
+ "epoch": 2.87,
942
+ "grad_norm": 0.06989463418722153,
943
+ "learning_rate": 1.075627996737627e-06,
944
+ "loss": 0.6082,
945
+ "step": 112
946
+ },
947
+ {
948
+ "epoch": 2.9,
949
+ "grad_norm": 0.07511158287525177,
950
+ "learning_rate": 6.888472704359661e-07,
951
+ "loss": 0.6145,
952
+ "step": 113
953
+ },
954
+ {
955
+ "epoch": 2.92,
956
+ "grad_norm": 0.08162180334329605,
957
+ "learning_rate": 3.87671520966415e-07,
958
+ "loss": 0.6144,
959
+ "step": 114
960
+ },
961
+ {
962
+ "epoch": 2.92,
963
+ "eval_loss": 0.6592249274253845,
964
+ "eval_runtime": 2.6101,
965
+ "eval_samples_per_second": 1.149,
966
+ "eval_steps_per_second": 1.149,
967
+ "step": 114
968
+ },
969
+ {
970
+ "epoch": 2.95,
971
+ "grad_norm": 0.09939952194690704,
972
+ "learning_rate": 1.7236035807416395e-07,
973
+ "loss": 0.6421,
974
+ "step": 115
975
+ },
976
+ {
977
+ "epoch": 2.97,
978
+ "grad_norm": 0.07238510996103287,
979
+ "learning_rate": 4.309937730015978e-08,
980
+ "loss": 0.633,
981
+ "step": 116
982
+ },
983
+ {
984
+ "epoch": 3.0,
985
+ "grad_norm": 0.08950413763523102,
986
+ "learning_rate": 0.0,
987
+ "loss": 0.6353,
988
+ "step": 117
989
+ }
990
+ ],
991
+ "logging_steps": 1,
992
+ "max_steps": 117,
993
+ "num_input_tokens_seen": 0,
994
+ "num_train_epochs": 3,
995
+ "save_steps": 500,
996
+ "total_flos": 1.9228613614239744e+16,
997
+ "train_batch_size": 1,
998
+ "trial_name": null,
999
+ "trial_params": null
1000
+ }
checkpoint-117/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec93f341aadc3a3ae6e610311a1c08ba41067179c0b0da5f660d4dc3168401cc
3
+ size 5115
checkpoint-39/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: bofenghuang/vigogne-2-7b-instruct
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.11.0
checkpoint-39/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "bofenghuang/vigogne-2-7b-instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "down_proj",
25
+ "o_proj",
26
+ "gate_proj",
27
+ "k_proj",
28
+ "q_proj",
29
+ "up_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-39/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3325aede574be93fce7402f5846c7bea523bf5cfcd9df3ae45de6bd19e8fb3b
3
+ size 844180648
checkpoint-39/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4856756c933f85c250058c366d477abf2334b9f812558e7210cbb142c0c033c
3
+ size 639908165
checkpoint-39/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9e5137dc2372d6b28a833d934b3dfec4e810c5830880c6a87760e5e986bd707
3
+ size 14575
checkpoint-39/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ce203b17a489275b1bda54262ee27eafe34a6cbb0e8362e312875332c7dd10d
3
+ size 627
checkpoint-39/trainer_state.json ADDED
@@ -0,0 +1,350 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 6,
6
+ "global_step": 39,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03,
13
+ "grad_norm": 0.08957596868276596,
14
+ "learning_rate": 2e-05,
15
+ "loss": 1.0134,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.03,
20
+ "eval_loss": 1.0981205701828003,
21
+ "eval_runtime": 2.5128,
22
+ "eval_samples_per_second": 1.194,
23
+ "eval_steps_per_second": 1.194,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.05,
28
+ "grad_norm": 0.07771213352680206,
29
+ "learning_rate": 4e-05,
30
+ "loss": 0.9545,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.08,
35
+ "grad_norm": 0.1224137470126152,
36
+ "learning_rate": 6e-05,
37
+ "loss": 1.1733,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.1,
42
+ "grad_norm": 0.09190034121274948,
43
+ "learning_rate": 8e-05,
44
+ "loss": 0.9954,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.13,
49
+ "grad_norm": 0.08263542503118515,
50
+ "learning_rate": 0.0001,
51
+ "loss": 0.9486,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.15,
56
+ "grad_norm": 0.09250061959028244,
57
+ "learning_rate": 0.00012,
58
+ "loss": 0.972,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.15,
63
+ "eval_loss": 1.0735869407653809,
64
+ "eval_runtime": 2.5357,
65
+ "eval_samples_per_second": 1.183,
66
+ "eval_steps_per_second": 1.183,
67
+ "step": 6
68
+ },
69
+ {
70
+ "epoch": 0.18,
71
+ "grad_norm": 0.1398034691810608,
72
+ "learning_rate": 0.00014,
73
+ "loss": 1.0445,
74
+ "step": 7
75
+ },
76
+ {
77
+ "epoch": 0.21,
78
+ "grad_norm": 0.0993918851017952,
79
+ "learning_rate": 0.00016,
80
+ "loss": 0.9169,
81
+ "step": 8
82
+ },
83
+ {
84
+ "epoch": 0.23,
85
+ "grad_norm": 0.07937725633382797,
86
+ "learning_rate": 0.00018,
87
+ "loss": 0.8462,
88
+ "step": 9
89
+ },
90
+ {
91
+ "epoch": 0.26,
92
+ "grad_norm": 0.10001373291015625,
93
+ "learning_rate": 0.0002,
94
+ "loss": 0.8708,
95
+ "step": 10
96
+ },
97
+ {
98
+ "epoch": 0.28,
99
+ "grad_norm": 0.1337287873029709,
100
+ "learning_rate": 0.00019995690062269984,
101
+ "loss": 0.86,
102
+ "step": 11
103
+ },
104
+ {
105
+ "epoch": 0.31,
106
+ "grad_norm": 0.11684636771678925,
107
+ "learning_rate": 0.00019982763964192585,
108
+ "loss": 0.7982,
109
+ "step": 12
110
+ },
111
+ {
112
+ "epoch": 0.31,
113
+ "eval_loss": 0.8548387885093689,
114
+ "eval_runtime": 2.5536,
115
+ "eval_samples_per_second": 1.175,
116
+ "eval_steps_per_second": 1.175,
117
+ "step": 12
118
+ },
119
+ {
120
+ "epoch": 0.33,
121
+ "grad_norm": 0.12103456258773804,
122
+ "learning_rate": 0.0001996123284790336,
123
+ "loss": 0.7906,
124
+ "step": 13
125
+ },
126
+ {
127
+ "epoch": 0.36,
128
+ "grad_norm": 0.1426106095314026,
129
+ "learning_rate": 0.00019931115272956405,
130
+ "loss": 0.7825,
131
+ "step": 14
132
+ },
133
+ {
134
+ "epoch": 0.38,
135
+ "grad_norm": 0.12367941439151764,
136
+ "learning_rate": 0.0001989243720032624,
137
+ "loss": 0.7341,
138
+ "step": 15
139
+ },
140
+ {
141
+ "epoch": 0.41,
142
+ "grad_norm": 0.10154826194047928,
143
+ "learning_rate": 0.00019845231970029773,
144
+ "loss": 0.7064,
145
+ "step": 16
146
+ },
147
+ {
148
+ "epoch": 0.44,
149
+ "grad_norm": 0.13628405332565308,
150
+ "learning_rate": 0.0001978954027238763,
151
+ "loss": 0.6988,
152
+ "step": 17
153
+ },
154
+ {
155
+ "epoch": 0.46,
156
+ "grad_norm": 0.11276472359895706,
157
+ "learning_rate": 0.0001972541011294959,
158
+ "loss": 0.6944,
159
+ "step": 18
160
+ },
161
+ {
162
+ "epoch": 0.46,
163
+ "eval_loss": 0.7151015400886536,
164
+ "eval_runtime": 2.5734,
165
+ "eval_samples_per_second": 1.166,
166
+ "eval_steps_per_second": 1.166,
167
+ "step": 18
168
+ },
169
+ {
170
+ "epoch": 0.49,
171
+ "grad_norm": 0.13381372392177582,
172
+ "learning_rate": 0.00019652896771114414,
173
+ "loss": 0.6956,
174
+ "step": 19
175
+ },
176
+ {
177
+ "epoch": 0.51,
178
+ "grad_norm": 0.11248588562011719,
179
+ "learning_rate": 0.00019572062752479683,
180
+ "loss": 0.7155,
181
+ "step": 20
182
+ },
183
+ {
184
+ "epoch": 0.54,
185
+ "grad_norm": 0.17762312293052673,
186
+ "learning_rate": 0.00019482977734962753,
187
+ "loss": 0.7357,
188
+ "step": 21
189
+ },
190
+ {
191
+ "epoch": 0.56,
192
+ "grad_norm": 0.10546916723251343,
193
+ "learning_rate": 0.00019385718508739262,
194
+ "loss": 0.6691,
195
+ "step": 22
196
+ },
197
+ {
198
+ "epoch": 0.59,
199
+ "grad_norm": 0.3150898516178131,
200
+ "learning_rate": 0.00019280368910050942,
201
+ "loss": 0.7167,
202
+ "step": 23
203
+ },
204
+ {
205
+ "epoch": 0.62,
206
+ "grad_norm": 0.13151158392429352,
207
+ "learning_rate": 0.00019167019748939846,
208
+ "loss": 0.6808,
209
+ "step": 24
210
+ },
211
+ {
212
+ "epoch": 0.62,
213
+ "eval_loss": 0.6942548751831055,
214
+ "eval_runtime": 2.5831,
215
+ "eval_samples_per_second": 1.161,
216
+ "eval_steps_per_second": 1.161,
217
+ "step": 24
218
+ },
219
+ {
220
+ "epoch": 0.64,
221
+ "grad_norm": 0.14906296133995056,
222
+ "learning_rate": 0.00019045768730971196,
223
+ "loss": 0.6762,
224
+ "step": 25
225
+ },
226
+ {
227
+ "epoch": 0.67,
228
+ "grad_norm": 0.19484123587608337,
229
+ "learning_rate": 0.00018916720373012426,
230
+ "loss": 0.6854,
231
+ "step": 26
232
+ },
233
+ {
234
+ "epoch": 0.69,
235
+ "grad_norm": 0.12819896638393402,
236
+ "learning_rate": 0.00018779985913140924,
237
+ "loss": 0.6873,
238
+ "step": 27
239
+ },
240
+ {
241
+ "epoch": 0.72,
242
+ "grad_norm": 0.21385614573955536,
243
+ "learning_rate": 0.00018635683214758214,
244
+ "loss": 0.6874,
245
+ "step": 28
246
+ },
247
+ {
248
+ "epoch": 0.74,
249
+ "grad_norm": 0.12286895513534546,
250
+ "learning_rate": 0.0001848393666499315,
251
+ "loss": 0.6843,
252
+ "step": 29
253
+ },
254
+ {
255
+ "epoch": 0.77,
256
+ "grad_norm": 0.08534862101078033,
257
+ "learning_rate": 0.00018324877067481783,
258
+ "loss": 0.6763,
259
+ "step": 30
260
+ },
261
+ {
262
+ "epoch": 0.77,
263
+ "eval_loss": 0.6821426749229431,
264
+ "eval_runtime": 2.5911,
265
+ "eval_samples_per_second": 1.158,
266
+ "eval_steps_per_second": 1.158,
267
+ "step": 30
268
+ },
269
+ {
270
+ "epoch": 0.79,
271
+ "grad_norm": 0.17990928888320923,
272
+ "learning_rate": 0.0001815864152961624,
273
+ "loss": 0.6789,
274
+ "step": 31
275
+ },
276
+ {
277
+ "epoch": 0.82,
278
+ "grad_norm": 0.12137839943170547,
279
+ "learning_rate": 0.0001798537334435986,
280
+ "loss": 0.6877,
281
+ "step": 32
282
+ },
283
+ {
284
+ "epoch": 0.85,
285
+ "grad_norm": 0.10240964591503143,
286
+ "learning_rate": 0.00017805221866730458,
287
+ "loss": 0.6725,
288
+ "step": 33
289
+ },
290
+ {
291
+ "epoch": 0.87,
292
+ "grad_norm": 0.14333295822143555,
293
+ "learning_rate": 0.00017618342385058145,
294
+ "loss": 0.6745,
295
+ "step": 34
296
+ },
297
+ {
298
+ "epoch": 0.9,
299
+ "grad_norm": 0.0904482752084732,
300
+ "learning_rate": 0.00017424895987128722,
301
+ "loss": 0.6894,
302
+ "step": 35
303
+ },
304
+ {
305
+ "epoch": 0.92,
306
+ "grad_norm": 0.11753042787313461,
307
+ "learning_rate": 0.00017225049421328023,
308
+ "loss": 0.67,
309
+ "step": 36
310
+ },
311
+ {
312
+ "epoch": 0.92,
313
+ "eval_loss": 0.6763580441474915,
314
+ "eval_runtime": 2.5955,
315
+ "eval_samples_per_second": 1.156,
316
+ "eval_steps_per_second": 1.156,
317
+ "step": 36
318
+ },
319
+ {
320
+ "epoch": 0.95,
321
+ "grad_norm": 0.13719823956489563,
322
+ "learning_rate": 0.00017018974952906884,
323
+ "loss": 0.6589,
324
+ "step": 37
325
+ },
326
+ {
327
+ "epoch": 0.97,
328
+ "grad_norm": 0.1040361225605011,
329
+ "learning_rate": 0.0001680685021549063,
330
+ "loss": 0.666,
331
+ "step": 38
332
+ },
333
+ {
334
+ "epoch": 1.0,
335
+ "grad_norm": 0.07594098895788193,
336
+ "learning_rate": 0.00016588858057961113,
337
+ "loss": 0.645,
338
+ "step": 39
339
+ }
340
+ ],
341
+ "logging_steps": 1,
342
+ "max_steps": 117,
343
+ "num_input_tokens_seen": 0,
344
+ "num_train_epochs": 3,
345
+ "save_steps": 500,
346
+ "total_flos": 6409537871413248.0,
347
+ "train_batch_size": 1,
348
+ "trial_name": null,
349
+ "trial_params": null
350
+ }
checkpoint-39/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec93f341aadc3a3ae6e610311a1c08ba41067179c0b0da5f660d4dc3168401cc
3
+ size 5115
checkpoint-78/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: bofenghuang/vigogne-2-7b-instruct
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.11.0
checkpoint-78/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "bofenghuang/vigogne-2-7b-instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "down_proj",
25
+ "o_proj",
26
+ "gate_proj",
27
+ "k_proj",
28
+ "q_proj",
29
+ "up_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-78/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf62552c89b8a9944f73d75f810f49a2d764b97998e6911352cc714de1a2b049
3
+ size 844180648
checkpoint-78/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40f2cd4143652f789359cf3a61f1436141920d43ccf0bfa70849414d9beeed14
3
+ size 639908165
checkpoint-78/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82106bea0a8a754add1d7e899e4dc1f4431bc3b4ff4abfa3136a688f4964b4cf
3
+ size 14575
checkpoint-78/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b78fd7900888162fc2f991fff9a35115e46eaf4801d11c1c93ea25e08303be2
3
+ size 627
checkpoint-78/trainer_state.json ADDED
@@ -0,0 +1,679 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.0,
5
+ "eval_steps": 6,
6
+ "global_step": 78,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03,
13
+ "grad_norm": 0.08957596868276596,
14
+ "learning_rate": 2e-05,
15
+ "loss": 1.0134,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.03,
20
+ "eval_loss": 1.0981205701828003,
21
+ "eval_runtime": 2.5128,
22
+ "eval_samples_per_second": 1.194,
23
+ "eval_steps_per_second": 1.194,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.05,
28
+ "grad_norm": 0.07771213352680206,
29
+ "learning_rate": 4e-05,
30
+ "loss": 0.9545,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.08,
35
+ "grad_norm": 0.1224137470126152,
36
+ "learning_rate": 6e-05,
37
+ "loss": 1.1733,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.1,
42
+ "grad_norm": 0.09190034121274948,
43
+ "learning_rate": 8e-05,
44
+ "loss": 0.9954,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.13,
49
+ "grad_norm": 0.08263542503118515,
50
+ "learning_rate": 0.0001,
51
+ "loss": 0.9486,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.15,
56
+ "grad_norm": 0.09250061959028244,
57
+ "learning_rate": 0.00012,
58
+ "loss": 0.972,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.15,
63
+ "eval_loss": 1.0735869407653809,
64
+ "eval_runtime": 2.5357,
65
+ "eval_samples_per_second": 1.183,
66
+ "eval_steps_per_second": 1.183,
67
+ "step": 6
68
+ },
69
+ {
70
+ "epoch": 0.18,
71
+ "grad_norm": 0.1398034691810608,
72
+ "learning_rate": 0.00014,
73
+ "loss": 1.0445,
74
+ "step": 7
75
+ },
76
+ {
77
+ "epoch": 0.21,
78
+ "grad_norm": 0.0993918851017952,
79
+ "learning_rate": 0.00016,
80
+ "loss": 0.9169,
81
+ "step": 8
82
+ },
83
+ {
84
+ "epoch": 0.23,
85
+ "grad_norm": 0.07937725633382797,
86
+ "learning_rate": 0.00018,
87
+ "loss": 0.8462,
88
+ "step": 9
89
+ },
90
+ {
91
+ "epoch": 0.26,
92
+ "grad_norm": 0.10001373291015625,
93
+ "learning_rate": 0.0002,
94
+ "loss": 0.8708,
95
+ "step": 10
96
+ },
97
+ {
98
+ "epoch": 0.28,
99
+ "grad_norm": 0.1337287873029709,
100
+ "learning_rate": 0.00019995690062269984,
101
+ "loss": 0.86,
102
+ "step": 11
103
+ },
104
+ {
105
+ "epoch": 0.31,
106
+ "grad_norm": 0.11684636771678925,
107
+ "learning_rate": 0.00019982763964192585,
108
+ "loss": 0.7982,
109
+ "step": 12
110
+ },
111
+ {
112
+ "epoch": 0.31,
113
+ "eval_loss": 0.8548387885093689,
114
+ "eval_runtime": 2.5536,
115
+ "eval_samples_per_second": 1.175,
116
+ "eval_steps_per_second": 1.175,
117
+ "step": 12
118
+ },
119
+ {
120
+ "epoch": 0.33,
121
+ "grad_norm": 0.12103456258773804,
122
+ "learning_rate": 0.0001996123284790336,
123
+ "loss": 0.7906,
124
+ "step": 13
125
+ },
126
+ {
127
+ "epoch": 0.36,
128
+ "grad_norm": 0.1426106095314026,
129
+ "learning_rate": 0.00019931115272956405,
130
+ "loss": 0.7825,
131
+ "step": 14
132
+ },
133
+ {
134
+ "epoch": 0.38,
135
+ "grad_norm": 0.12367941439151764,
136
+ "learning_rate": 0.0001989243720032624,
137
+ "loss": 0.7341,
138
+ "step": 15
139
+ },
140
+ {
141
+ "epoch": 0.41,
142
+ "grad_norm": 0.10154826194047928,
143
+ "learning_rate": 0.00019845231970029773,
144
+ "loss": 0.7064,
145
+ "step": 16
146
+ },
147
+ {
148
+ "epoch": 0.44,
149
+ "grad_norm": 0.13628405332565308,
150
+ "learning_rate": 0.0001978954027238763,
151
+ "loss": 0.6988,
152
+ "step": 17
153
+ },
154
+ {
155
+ "epoch": 0.46,
156
+ "grad_norm": 0.11276472359895706,
157
+ "learning_rate": 0.0001972541011294959,
158
+ "loss": 0.6944,
159
+ "step": 18
160
+ },
161
+ {
162
+ "epoch": 0.46,
163
+ "eval_loss": 0.7151015400886536,
164
+ "eval_runtime": 2.5734,
165
+ "eval_samples_per_second": 1.166,
166
+ "eval_steps_per_second": 1.166,
167
+ "step": 18
168
+ },
169
+ {
170
+ "epoch": 0.49,
171
+ "grad_norm": 0.13381372392177582,
172
+ "learning_rate": 0.00019652896771114414,
173
+ "loss": 0.6956,
174
+ "step": 19
175
+ },
176
+ {
177
+ "epoch": 0.51,
178
+ "grad_norm": 0.11248588562011719,
179
+ "learning_rate": 0.00019572062752479683,
180
+ "loss": 0.7155,
181
+ "step": 20
182
+ },
183
+ {
184
+ "epoch": 0.54,
185
+ "grad_norm": 0.17762312293052673,
186
+ "learning_rate": 0.00019482977734962753,
187
+ "loss": 0.7357,
188
+ "step": 21
189
+ },
190
+ {
191
+ "epoch": 0.56,
192
+ "grad_norm": 0.10546916723251343,
193
+ "learning_rate": 0.00019385718508739262,
194
+ "loss": 0.6691,
195
+ "step": 22
196
+ },
197
+ {
198
+ "epoch": 0.59,
199
+ "grad_norm": 0.3150898516178131,
200
+ "learning_rate": 0.00019280368910050942,
201
+ "loss": 0.7167,
202
+ "step": 23
203
+ },
204
+ {
205
+ "epoch": 0.62,
206
+ "grad_norm": 0.13151158392429352,
207
+ "learning_rate": 0.00019167019748939846,
208
+ "loss": 0.6808,
209
+ "step": 24
210
+ },
211
+ {
212
+ "epoch": 0.62,
213
+ "eval_loss": 0.6942548751831055,
214
+ "eval_runtime": 2.5831,
215
+ "eval_samples_per_second": 1.161,
216
+ "eval_steps_per_second": 1.161,
217
+ "step": 24
218
+ },
219
+ {
220
+ "epoch": 0.64,
221
+ "grad_norm": 0.14906296133995056,
222
+ "learning_rate": 0.00019045768730971196,
223
+ "loss": 0.6762,
224
+ "step": 25
225
+ },
226
+ {
227
+ "epoch": 0.67,
228
+ "grad_norm": 0.19484123587608337,
229
+ "learning_rate": 0.00018916720373012426,
230
+ "loss": 0.6854,
231
+ "step": 26
232
+ },
233
+ {
234
+ "epoch": 0.69,
235
+ "grad_norm": 0.12819896638393402,
236
+ "learning_rate": 0.00018779985913140924,
237
+ "loss": 0.6873,
238
+ "step": 27
239
+ },
240
+ {
241
+ "epoch": 0.72,
242
+ "grad_norm": 0.21385614573955536,
243
+ "learning_rate": 0.00018635683214758214,
244
+ "loss": 0.6874,
245
+ "step": 28
246
+ },
247
+ {
248
+ "epoch": 0.74,
249
+ "grad_norm": 0.12286895513534546,
250
+ "learning_rate": 0.0001848393666499315,
251
+ "loss": 0.6843,
252
+ "step": 29
253
+ },
254
+ {
255
+ "epoch": 0.77,
256
+ "grad_norm": 0.08534862101078033,
257
+ "learning_rate": 0.00018324877067481783,
258
+ "loss": 0.6763,
259
+ "step": 30
260
+ },
261
+ {
262
+ "epoch": 0.77,
263
+ "eval_loss": 0.6821426749229431,
264
+ "eval_runtime": 2.5911,
265
+ "eval_samples_per_second": 1.158,
266
+ "eval_steps_per_second": 1.158,
267
+ "step": 30
268
+ },
269
+ {
270
+ "epoch": 0.79,
271
+ "grad_norm": 0.17990928888320923,
272
+ "learning_rate": 0.0001815864152961624,
273
+ "loss": 0.6789,
274
+ "step": 31
275
+ },
276
+ {
277
+ "epoch": 0.82,
278
+ "grad_norm": 0.12137839943170547,
279
+ "learning_rate": 0.0001798537334435986,
280
+ "loss": 0.6877,
281
+ "step": 32
282
+ },
283
+ {
284
+ "epoch": 0.85,
285
+ "grad_norm": 0.10240964591503143,
286
+ "learning_rate": 0.00017805221866730458,
287
+ "loss": 0.6725,
288
+ "step": 33
289
+ },
290
+ {
291
+ "epoch": 0.87,
292
+ "grad_norm": 0.14333295822143555,
293
+ "learning_rate": 0.00017618342385058145,
294
+ "loss": 0.6745,
295
+ "step": 34
296
+ },
297
+ {
298
+ "epoch": 0.9,
299
+ "grad_norm": 0.0904482752084732,
300
+ "learning_rate": 0.00017424895987128722,
301
+ "loss": 0.6894,
302
+ "step": 35
303
+ },
304
+ {
305
+ "epoch": 0.92,
306
+ "grad_norm": 0.11753042787313461,
307
+ "learning_rate": 0.00017225049421328023,
308
+ "loss": 0.67,
309
+ "step": 36
310
+ },
311
+ {
312
+ "epoch": 0.92,
313
+ "eval_loss": 0.6763580441474915,
314
+ "eval_runtime": 2.5955,
315
+ "eval_samples_per_second": 1.156,
316
+ "eval_steps_per_second": 1.156,
317
+ "step": 36
318
+ },
319
+ {
320
+ "epoch": 0.95,
321
+ "grad_norm": 0.13719823956489563,
322
+ "learning_rate": 0.00017018974952906884,
323
+ "loss": 0.6589,
324
+ "step": 37
325
+ },
326
+ {
327
+ "epoch": 0.97,
328
+ "grad_norm": 0.1040361225605011,
329
+ "learning_rate": 0.0001680685021549063,
330
+ "loss": 0.666,
331
+ "step": 38
332
+ },
333
+ {
334
+ "epoch": 1.0,
335
+ "grad_norm": 0.07594098895788193,
336
+ "learning_rate": 0.00016588858057961113,
337
+ "loss": 0.645,
338
+ "step": 39
339
+ },
340
+ {
341
+ "epoch": 1.03,
342
+ "grad_norm": 0.08139798045158386,
343
+ "learning_rate": 0.0001636518638684325,
344
+ "loss": 0.6542,
345
+ "step": 40
346
+ },
347
+ {
348
+ "epoch": 1.05,
349
+ "grad_norm": 0.07313457876443863,
350
+ "learning_rate": 0.0001613602800433194,
351
+ "loss": 0.6458,
352
+ "step": 41
353
+ },
354
+ {
355
+ "epoch": 1.08,
356
+ "grad_norm": 0.07903215289115906,
357
+ "learning_rate": 0.00015901580442098968,
358
+ "loss": 0.6424,
359
+ "step": 42
360
+ },
361
+ {
362
+ "epoch": 1.08,
363
+ "eval_loss": 0.6730008125305176,
364
+ "eval_runtime": 2.5989,
365
+ "eval_samples_per_second": 1.154,
366
+ "eval_steps_per_second": 1.154,
367
+ "step": 42
368
+ },
369
+ {
370
+ "epoch": 1.1,
371
+ "grad_norm": 0.09322352707386017,
372
+ "learning_rate": 0.00015662045791023173,
373
+ "loss": 0.6567,
374
+ "step": 43
375
+ },
376
+ {
377
+ "epoch": 1.13,
378
+ "grad_norm": 0.07249985635280609,
379
+ "learning_rate": 0.00015417630526990615,
380
+ "loss": 0.6384,
381
+ "step": 44
382
+ },
383
+ {
384
+ "epoch": 1.15,
385
+ "grad_norm": 0.07686451077461243,
386
+ "learning_rate": 0.0001516854533291494,
387
+ "loss": 0.665,
388
+ "step": 45
389
+ },
390
+ {
391
+ "epoch": 1.18,
392
+ "grad_norm": 0.07324113696813583,
393
+ "learning_rate": 0.00014915004917131344,
394
+ "loss": 0.6297,
395
+ "step": 46
396
+ },
397
+ {
398
+ "epoch": 1.21,
399
+ "grad_norm": 0.09203895926475525,
400
+ "learning_rate": 0.00014657227828320635,
401
+ "loss": 0.6539,
402
+ "step": 47
403
+ },
404
+ {
405
+ "epoch": 1.23,
406
+ "grad_norm": 0.09338624030351639,
407
+ "learning_rate": 0.00014395436267123016,
408
+ "loss": 0.6552,
409
+ "step": 48
410
+ },
411
+ {
412
+ "epoch": 1.23,
413
+ "eval_loss": 0.6780009269714355,
414
+ "eval_runtime": 2.6045,
415
+ "eval_samples_per_second": 1.152,
416
+ "eval_steps_per_second": 1.152,
417
+ "step": 48
418
+ },
419
+ {
420
+ "epoch": 1.26,
421
+ "grad_norm": 0.0812142863869667,
422
+ "learning_rate": 0.00014129855894603886,
423
+ "loss": 0.6319,
424
+ "step": 49
425
+ },
426
+ {
427
+ "epoch": 1.28,
428
+ "grad_norm": 0.19316132366657257,
429
+ "learning_rate": 0.00013860715637736818,
430
+ "loss": 0.7,
431
+ "step": 50
432
+ },
433
+ {
434
+ "epoch": 1.31,
435
+ "grad_norm": 0.10698059946298599,
436
+ "learning_rate": 0.0001358824749207136,
437
+ "loss": 0.6725,
438
+ "step": 51
439
+ },
440
+ {
441
+ "epoch": 1.33,
442
+ "grad_norm": 0.14100198447704315,
443
+ "learning_rate": 0.00013312686321755761,
444
+ "loss": 0.6766,
445
+ "step": 52
446
+ },
447
+ {
448
+ "epoch": 1.36,
449
+ "grad_norm": 0.09599179029464722,
450
+ "learning_rate": 0.00013034269657086992,
451
+ "loss": 0.645,
452
+ "step": 53
453
+ },
454
+ {
455
+ "epoch": 1.38,
456
+ "grad_norm": 0.08999059349298477,
457
+ "learning_rate": 0.000127532374897626,
458
+ "loss": 0.6527,
459
+ "step": 54
460
+ },
461
+ {
462
+ "epoch": 1.38,
463
+ "eval_loss": 0.6689873337745667,
464
+ "eval_runtime": 2.6108,
465
+ "eval_samples_per_second": 1.149,
466
+ "eval_steps_per_second": 1.149,
467
+ "step": 54
468
+ },
469
+ {
470
+ "epoch": 1.41,
471
+ "grad_norm": 0.13835830986499786,
472
+ "learning_rate": 0.00012469832066010843,
473
+ "loss": 0.6561,
474
+ "step": 55
475
+ },
476
+ {
477
+ "epoch": 1.44,
478
+ "grad_norm": 0.10695886611938477,
479
+ "learning_rate": 0.00012184297677777463,
480
+ "loss": 0.6668,
481
+ "step": 56
482
+ },
483
+ {
484
+ "epoch": 1.46,
485
+ "grad_norm": 0.0739368349313736,
486
+ "learning_rate": 0.00011896880452149077,
487
+ "loss": 0.643,
488
+ "step": 57
489
+ },
490
+ {
491
+ "epoch": 1.49,
492
+ "grad_norm": 0.21791452169418335,
493
+ "learning_rate": 0.00011607828139194683,
494
+ "loss": 0.6768,
495
+ "step": 58
496
+ },
497
+ {
498
+ "epoch": 1.51,
499
+ "grad_norm": 0.06241246312856674,
500
+ "learning_rate": 0.00011317389898408189,
501
+ "loss": 0.6252,
502
+ "step": 59
503
+ },
504
+ {
505
+ "epoch": 1.54,
506
+ "grad_norm": 0.1302526593208313,
507
+ "learning_rate": 0.00011025816083936036,
508
+ "loss": 0.6624,
509
+ "step": 60
510
+ },
511
+ {
512
+ "epoch": 1.54,
513
+ "eval_loss": 0.6632375121116638,
514
+ "eval_runtime": 2.6043,
515
+ "eval_samples_per_second": 1.152,
516
+ "eval_steps_per_second": 1.152,
517
+ "step": 60
518
+ },
519
+ {
520
+ "epoch": 1.56,
521
+ "grad_norm": 0.11702455580234528,
522
+ "learning_rate": 0.0001073335802877504,
523
+ "loss": 0.6522,
524
+ "step": 61
525
+ },
526
+ {
527
+ "epoch": 1.59,
528
+ "grad_norm": 0.08904154598712921,
529
+ "learning_rate": 0.00010440267828126478,
530
+ "loss": 0.6472,
531
+ "step": 62
532
+ },
533
+ {
534
+ "epoch": 1.62,
535
+ "grad_norm": 0.08021406084299088,
536
+ "learning_rate": 0.00010146798122093166,
537
+ "loss": 0.6279,
538
+ "step": 63
539
+ },
540
+ {
541
+ "epoch": 1.64,
542
+ "grad_norm": 0.07384659349918365,
543
+ "learning_rate": 9.853201877906836e-05,
544
+ "loss": 0.6262,
545
+ "step": 64
546
+ },
547
+ {
548
+ "epoch": 1.67,
549
+ "grad_norm": 0.06457240134477615,
550
+ "learning_rate": 9.559732171873523e-05,
551
+ "loss": 0.64,
552
+ "step": 65
553
+ },
554
+ {
555
+ "epoch": 1.69,
556
+ "grad_norm": 0.07967618852853775,
557
+ "learning_rate": 9.266641971224963e-05,
558
+ "loss": 0.6228,
559
+ "step": 66
560
+ },
561
+ {
562
+ "epoch": 1.69,
563
+ "eval_loss": 0.6625072360038757,
564
+ "eval_runtime": 2.6047,
565
+ "eval_samples_per_second": 1.152,
566
+ "eval_steps_per_second": 1.152,
567
+ "step": 66
568
+ },
569
+ {
570
+ "epoch": 1.72,
571
+ "grad_norm": 0.09555868804454803,
572
+ "learning_rate": 8.974183916063968e-05,
573
+ "loss": 0.635,
574
+ "step": 67
575
+ },
576
+ {
577
+ "epoch": 1.74,
578
+ "grad_norm": 0.07187359035015106,
579
+ "learning_rate": 8.682610101591814e-05,
580
+ "loss": 0.6277,
581
+ "step": 68
582
+ },
583
+ {
584
+ "epoch": 1.77,
585
+ "grad_norm": 0.091610848903656,
586
+ "learning_rate": 8.392171860805319e-05,
587
+ "loss": 0.6649,
588
+ "step": 69
589
+ },
590
+ {
591
+ "epoch": 1.79,
592
+ "grad_norm": 0.065833680331707,
593
+ "learning_rate": 8.103119547850924e-05,
594
+ "loss": 0.6262,
595
+ "step": 70
596
+ },
597
+ {
598
+ "epoch": 1.82,
599
+ "grad_norm": 0.09459354728460312,
600
+ "learning_rate": 7.815702322222538e-05,
601
+ "loss": 0.6359,
602
+ "step": 71
603
+ },
604
+ {
605
+ "epoch": 1.85,
606
+ "grad_norm": 0.06780053675174713,
607
+ "learning_rate": 7.530167933989161e-05,
608
+ "loss": 0.6447,
609
+ "step": 72
610
+ },
611
+ {
612
+ "epoch": 1.85,
613
+ "eval_loss": 0.6616933941841125,
614
+ "eval_runtime": 2.607,
615
+ "eval_samples_per_second": 1.151,
616
+ "eval_steps_per_second": 1.151,
617
+ "step": 72
618
+ },
619
+ {
620
+ "epoch": 1.87,
621
+ "grad_norm": 0.0954224094748497,
622
+ "learning_rate": 7.246762510237403e-05,
623
+ "loss": 0.6636,
624
+ "step": 73
625
+ },
626
+ {
627
+ "epoch": 1.9,
628
+ "grad_norm": 0.0937703400850296,
629
+ "learning_rate": 6.96573034291301e-05,
630
+ "loss": 0.6381,
631
+ "step": 74
632
+ },
633
+ {
634
+ "epoch": 1.92,
635
+ "grad_norm": 0.10935033112764359,
636
+ "learning_rate": 6.687313678244242e-05,
637
+ "loss": 0.628,
638
+ "step": 75
639
+ },
640
+ {
641
+ "epoch": 1.95,
642
+ "grad_norm": 0.08154003322124481,
643
+ "learning_rate": 6.411752507928642e-05,
644
+ "loss": 0.6386,
645
+ "step": 76
646
+ },
647
+ {
648
+ "epoch": 1.97,
649
+ "grad_norm": 0.12196218967437744,
650
+ "learning_rate": 6.139284362263185e-05,
651
+ "loss": 0.6317,
652
+ "step": 77
653
+ },
654
+ {
655
+ "epoch": 2.0,
656
+ "grad_norm": 0.11538293212652206,
657
+ "learning_rate": 5.870144105396118e-05,
658
+ "loss": 0.6409,
659
+ "step": 78
660
+ },
661
+ {
662
+ "epoch": 2.0,
663
+ "eval_loss": 0.6598871350288391,
664
+ "eval_runtime": 2.6073,
665
+ "eval_samples_per_second": 1.151,
666
+ "eval_steps_per_second": 1.151,
667
+ "step": 78
668
+ }
669
+ ],
670
+ "logging_steps": 1,
671
+ "max_steps": 117,
672
+ "num_input_tokens_seen": 0,
673
+ "num_train_epochs": 3,
674
+ "save_steps": 500,
675
+ "total_flos": 1.2819075742826496e+16,
676
+ "train_batch_size": 1,
677
+ "trial_name": null,
678
+ "trial_params": null
679
+ }
checkpoint-78/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec93f341aadc3a3ae6e610311a1c08ba41067179c0b0da5f660d4dc3168401cc
3
+ size 5115
config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "bofenghuang/vigogne-2-7b-instruct",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 11008,
14
+ "max_length": 4096,
15
+ "max_position_embeddings": 4096,
16
+ "model_type": "llama",
17
+ "num_attention_heads": 32,
18
+ "num_hidden_layers": 32,
19
+ "num_key_value_heads": 32,
20
+ "pad_token_id": 0,
21
+ "pretraining_tp": 1,
22
+ "quantization_config": {
23
+ "_load_in_4bit": true,
24
+ "_load_in_8bit": false,
25
+ "bnb_4bit_compute_dtype": "bfloat16",
26
+ "bnb_4bit_quant_type": "nf4",
27
+ "bnb_4bit_use_double_quant": true,
28
+ "llm_int8_enable_fp32_cpu_offload": false,
29
+ "llm_int8_has_fp16_weight": false,
30
+ "llm_int8_skip_modules": null,
31
+ "llm_int8_threshold": 6.0,
32
+ "load_in_4bit": true,
33
+ "load_in_8bit": false,
34
+ "quant_method": "bitsandbytes"
35
+ },
36
+ "rms_norm_eps": 1e-05,
37
+ "rope_scaling": null,
38
+ "rope_theta": 10000.0,
39
+ "tie_word_embeddings": false,
40
+ "torch_dtype": "float16",
41
+ "transformers_version": "4.39.0.dev0",
42
+ "use_cache": false,
43
+ "vocab_size": 32001
44
+ }
merged/added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<pad>": 32000
3
+ }
merged/config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "bofenghuang/vigogne-2-7b-instruct",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 11008,
14
+ "max_length": 4096,
15
+ "max_position_embeddings": 4096,
16
+ "model_type": "llama",
17
+ "num_attention_heads": 32,
18
+ "num_hidden_layers": 32,
19
+ "num_key_value_heads": 32,
20
+ "pad_token_id": 0,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_scaling": null,
24
+ "rope_theta": 10000.0,
25
+ "tie_word_embeddings": false,
26
+ "torch_dtype": "bfloat16",
27
+ "transformers_version": "4.39.0.dev0",
28
+ "use_cache": false,
29
+ "vocab_size": 32001
30
+ }
merged/generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "do_sample": true,
5
+ "eos_token_id": 2,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.9,
8
+ "top_p": 0.6,
9
+ "transformers_version": "4.39.0.dev0"
10
+ }
merged/pytorch_model-00001-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a501f49b4c58501efca6c3e4a8498a7309842706ba5753999499d26bd6be0e1
3
+ size 4939018290
merged/pytorch_model-00002-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05f1ac32c14826058810523ddadecad794bfaa793e337889f111092f1234d4c9
3
+ size 4947416538
merged/pytorch_model-00003-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd67ca940bc317794c1778cedff20e34a07195f6223369c834305b524401587e
3
+ size 3590514937
merged/pytorch_model.bin.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 13476847616
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00003-of-00003.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00003.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
16
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
17
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
18
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
19
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
20
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
21
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
22
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
23
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
24
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
25
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
26
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
27
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
28
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
29
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
30
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
31
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
32
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
33
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
34
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
35
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
36
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
37
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
38
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
39
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
40
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
41
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
42
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
43
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
44
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
45
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
46
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
47
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
48
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
49
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
50
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
51
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
52
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
53
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
54
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
55
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
56
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
57
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
58
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
59
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
60
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
61
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
62
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
63
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
64
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
65
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
66
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
67
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
68
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
69
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
70
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
71
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
72
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
73
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
74
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
75
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
76
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
77
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
78
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
79
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
80
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
81
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
82
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
83
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
84
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
85
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
86
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
87
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
88
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
89
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
90
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
91
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
92
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
93
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
94
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
95
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
96
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
97
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
98
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
99
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
100
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
101
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
102
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
103
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
104
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
105
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
106
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
107
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
108
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
109
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
110
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
111
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
112
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
113
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
114
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
115
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
116
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
117
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
118
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
119
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
120
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
121
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
122
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
123
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
124
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
125
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
126
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
127
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
128
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
129
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
130
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
131
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
132
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
133
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
134
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
135
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
136
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
137
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
138
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
139
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
140
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
141
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
142
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
143
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
144
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
145
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
146
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
147
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
148
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
149
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
150
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
151
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
152
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
153
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
154
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
155
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
156
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
157
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
158
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
159
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
160
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
161
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
162
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
163
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
164
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
165
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
166
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
167
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
168
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
169
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
170
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
171
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
172
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
173
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
174
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
175
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
176
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
177
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
178
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
179
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
180
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
181
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
182
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
183
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
184
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
185
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
186
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
187
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
188
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
189
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
190
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
191
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
192
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
193
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
194
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
195
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
196
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
197
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
198
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
199
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
200
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
201
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
202
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
203
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
204
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
205
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
206
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
207
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
208
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
209
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
210
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
211
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
212
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
213
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
214
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
215
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
216
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
217
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
218
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
219
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
220
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
221
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
222
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
223
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
224
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
225
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
226
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
227
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
228
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
229
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
230
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
231
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
232
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
233
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
234
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
235
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
236
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
237
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
238
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
239
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
240
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
241
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
242
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
243
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
244
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
245
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
246
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
247
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
248
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
249
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
250
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
251
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
252
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
253
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
254
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
255
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
256
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
257
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
258
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
259
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
260
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
261
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
262
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
263
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
264
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
265
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
266
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
267
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
268
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
269
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
270
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
271
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
272
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
273
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
274
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
275
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
276
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
277
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
278
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
279
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
280
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
281
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
282
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
283
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
284
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
285
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
286
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
287
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
288
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
289
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
290
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
291
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
292
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
293
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
294
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
295
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
296
+ "model.norm.weight": "pytorch_model-00003-of-00003.bin"
297
+ }
298
+ }
merged/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
merged/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
merged/tokenizer_config.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "32000": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": false
37
+ }
38
+ },
39
+ "bos_token": "<s>",
40
+ "clean_up_tokenization_spaces": false,
41
+ "eos_token": "</s>",
42
+ "legacy": false,
43
+ "model_max_length": 1000000000000000019884624838656,
44
+ "pad_token": "</s>",
45
+ "padding_side": "right",
46
+ "sp_model_kwargs": {},
47
+ "spaces_between_special_tokens": false,
48
+ "tokenizer_class": "LlamaTokenizer",
49
+ "unk_token": "<unk>",
50
+ "use_default_system_prompt": false,
51
+ "use_fast": true
52
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "32000": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": false
37
+ }
38
+ },
39
+ "bos_token": "<s>",
40
+ "clean_up_tokenization_spaces": false,
41
+ "eos_token": "</s>",
42
+ "legacy": false,
43
+ "model_max_length": 1000000000000000019884624838656,
44
+ "pad_token": "</s>",
45
+ "padding_side": "right",
46
+ "sp_model_kwargs": {},
47
+ "spaces_between_special_tokens": false,
48
+ "tokenizer_class": "LlamaTokenizer",
49
+ "unk_token": "<unk>",
50
+ "use_default_system_prompt": false,
51
+ "use_fast": true
52
+ }