File size: 67,703 Bytes
a952843 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 |
---
base_model: microsoft/deberta-v3-small
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:32500
- loss:GISTEmbedLoss
widget:
- source_sentence: phase changes do not change
sentences:
- The major Atlantic slave trading nations, ordered by trade volume, were the Portuguese,
the British, the Spanish, the French, the Dutch, and the Danish. Several had established
outposts on the African coast where they purchased slaves from local African leaders.
- "phase changes do not change mass. Particles have mass, but mass is energy. \n\
\ phase changes do not change energy"
- According to the U.S. Census Bureau , the county is a total area of , which has
land and ( 0.2 % ) is water .
- source_sentence: what jobs can you get with a bachelor degree in anthropology?
sentences:
- To determine the atomic weight of an element, you should add up protons and neutrons.
- '[''Paleontologist*'', ''Archaeologist*'', ''University Professor*'', ''Market
Research Analyst*'', ''Primatologist.'', ''Forensic Scientist*'', ''Medical Anthropologist.'',
''Museum Technician.'']'
- The wingspan flies , the moth comes depending on the location from July to August
.
- source_sentence: Identify different forms of energy (e.g., light, sound, heat).
sentences:
- '`` Irreplaceable '''' '''' remained on the chart for thirty weeks , and was certified
double-platinum by the Recording Industry Association of America ( RIAA ) , denoting
sales of two million downloads , and had sold over 3,139,000 paid digital downloads
in the US as of October 2012 , according to Nielsen SoundScan . '''''
- On Rotten Tomatoes , the film has a rating of 63 % , based on 87 reviews , with
an average rating of 5.9/10 .
- Heat, light, and sound are all different forms of energy.
- source_sentence: what is so small it can only be seen with an electron microscope?
sentences:
- "Viruses are so small that they can be seen only with an electron microscope..\
\ Where most viruses are DNA, HIV is an RNA virus. \n HIV is so small it can only\
\ be seen with an electron microscope"
- The development of modern lasers has opened many doors to both research and applications.
A laser beam was used to measure the distance from the Earth to the moon. Lasers
are important components of CD players. As the image above illustrates, lasers
can provide precise focusing of beams to selectively destroy cancer cells in patients.
The ability of a laser to focus precisely is due to high-quality crystals that
help give rise to the laser beam. A variety of techniques are used to manufacture
pure crystals for use in lasers.
- Discussion for (a) This value is the net work done on the package. The person
actually does more work than this, because friction opposes the motion. Friction
does negative work and removes some of the energy the person expends and converts
it to thermal energy. The net work equals the sum of the work done by each individual
force. Strategy and Concept for (b) The forces acting on the package are gravity,
the normal force, the force of friction, and the applied force. The normal force
and force of gravity are each perpendicular to the displacement, and therefore
do no work. Solution for (b) The applied force does work.
- source_sentence: what aspects of your environment may relate to the epidemic of
obesity
sentences:
- Jan Kromkamp ( born August 17 , 1980 in Makkinga , Netherlands ) is a Dutch footballer
.
- When chemicals in solution react, the proper way of writing the chemical formulas
of the dissolved ionic compounds is in terms of the dissociated ions, not the
complete ionic formula. A complete ionic equation is a chemical equation in which
the dissolved ionic compounds are written as separated ions. Solubility rules
are very useful in determining which ionic compounds are dissolved and which are
not. For example, when NaCl(aq) reacts with AgNO3(aq) in a double-replacement
reaction to precipitate AgCl(s) and form NaNO3(aq), the complete ionic equation
includes NaCl, AgNO3, and NaNO3 written as separated ions:.
- Genetic changes in human populations occur too slowly to be responsible for the
obesity epidemic. Nevertheless, the variation in how people respond to the environment
that promotes physical inactivity and intake of high-calorie foods suggests that
genes do play a role in the development of obesity.
model-index:
- name: SentenceTransformer based on microsoft/deberta-v3-small
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.3774946012125992
name: Pearson Cosine
- type: spearman_cosine
value: 0.4056589966976888
name: Spearman Cosine
- type: pearson_manhattan
value: 0.3861982631744407
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.4059364545183154
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.38652243004790016
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.4056589966976888
name: Spearman Euclidean
- type: pearson_dot
value: 0.3774648453085433
name: Pearson Dot
- type: spearman_dot
value: 0.40563469676275316
name: Spearman Dot
- type: pearson_max
value: 0.38652243004790016
name: Pearson Max
- type: spearman_max
value: 0.4059364545183154
name: Spearman Max
- task:
type: binary-classification
name: Binary Classification
dataset:
name: allNLI dev
type: allNLI-dev
metrics:
- type: cosine_accuracy
value: 0.67578125
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.9427558183670044
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.5225225225225225
name: Cosine F1
- type: cosine_f1_threshold
value: 0.8046966791152954
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.3795811518324607
name: Cosine Precision
- type: cosine_recall
value: 0.838150289017341
name: Cosine Recall
- type: cosine_ap
value: 0.4368751759846574
name: Cosine Ap
- type: dot_accuracy
value: 0.67578125
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 724.1080322265625
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.5225225225225225
name: Dot F1
- type: dot_f1_threshold
value: 618.074951171875
name: Dot F1 Threshold
- type: dot_precision
value: 0.3795811518324607
name: Dot Precision
- type: dot_recall
value: 0.838150289017341
name: Dot Recall
- type: dot_ap
value: 0.436842886797982
name: Dot Ap
- type: manhattan_accuracy
value: 0.677734375
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 223.6764373779297
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.5239852398523985
name: Manhattan F1
- type: manhattan_f1_threshold
value: 372.31396484375
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.38482384823848237
name: Manhattan Precision
- type: manhattan_recall
value: 0.8208092485549133
name: Manhattan Recall
- type: manhattan_ap
value: 0.43892484929307635
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.67578125
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 9.377331733703613
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.5225225225225225
name: Euclidean F1
- type: euclidean_f1_threshold
value: 17.321048736572266
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.3795811518324607
name: Euclidean Precision
- type: euclidean_recall
value: 0.838150289017341
name: Euclidean Recall
- type: euclidean_ap
value: 0.4368602200677977
name: Euclidean Ap
- type: max_accuracy
value: 0.677734375
name: Max Accuracy
- type: max_accuracy_threshold
value: 724.1080322265625
name: Max Accuracy Threshold
- type: max_f1
value: 0.5239852398523985
name: Max F1
- type: max_f1_threshold
value: 618.074951171875
name: Max F1 Threshold
- type: max_precision
value: 0.38482384823848237
name: Max Precision
- type: max_recall
value: 0.838150289017341
name: Max Recall
- type: max_ap
value: 0.43892484929307635
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: Qnli dev
type: Qnli-dev
metrics:
- type: cosine_accuracy
value: 0.646484375
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8057259321212769
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.6688102893890675
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7187118530273438
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.538860103626943
name: Cosine Precision
- type: cosine_recall
value: 0.8813559322033898
name: Cosine Recall
- type: cosine_ap
value: 0.6720663622193426
name: Cosine Ap
- type: dot_accuracy
value: 0.646484375
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 618.8643798828125
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.6688102893890675
name: Dot F1
- type: dot_f1_threshold
value: 552.0260009765625
name: Dot F1 Threshold
- type: dot_precision
value: 0.538860103626943
name: Dot Precision
- type: dot_recall
value: 0.8813559322033898
name: Dot Recall
- type: dot_ap
value: 0.672083506527328
name: Dot Ap
- type: manhattan_accuracy
value: 0.6484375
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 386.58905029296875
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.6645569620253164
name: Manhattan F1
- type: manhattan_f1_threshold
value: 462.609130859375
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.5303030303030303
name: Manhattan Precision
- type: manhattan_recall
value: 0.8898305084745762
name: Manhattan Recall
- type: manhattan_ap
value: 0.6724653688821339
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.646484375
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 17.27533721923828
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.6688102893890675
name: Euclidean F1
- type: euclidean_f1_threshold
value: 20.787063598632812
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.538860103626943
name: Euclidean Precision
- type: euclidean_recall
value: 0.8813559322033898
name: Euclidean Recall
- type: euclidean_ap
value: 0.6720591998758361
name: Euclidean Ap
- type: max_accuracy
value: 0.6484375
name: Max Accuracy
- type: max_accuracy_threshold
value: 618.8643798828125
name: Max Accuracy Threshold
- type: max_f1
value: 0.6688102893890675
name: Max F1
- type: max_f1_threshold
value: 552.0260009765625
name: Max F1 Threshold
- type: max_precision
value: 0.538860103626943
name: Max Precision
- type: max_recall
value: 0.8898305084745762
name: Max Recall
- type: max_ap
value: 0.6724653688821339
name: Max Ap
---
# SentenceTransformer based on microsoft/deberta-v3-small
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) <!-- at revision a36c739020e01763fe789b4b85e2df55d6180012 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): AdvancedWeightedPooling(
(alpha_dropout_layer): Dropout(p=0.05, inplace=False)
(gate_dropout_layer): Dropout(p=0.0, inplace=False)
(linear_cls_Qpj): Linear(in_features=768, out_features=768, bias=True)
(linear_attnOut): Linear(in_features=768, out_features=768, bias=True)
(mha): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
)
(layernorm_output): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(layernorm_weightedPooing): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(layernorm_attnOut): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
)
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTa3-s-CustomPoolin-toytest4-step1-checkpoints-tmp")
# Run inference
sentences = [
'what aspects of your environment may relate to the epidemic of obesity',
'Genetic changes in human populations occur too slowly to be responsible for the obesity epidemic. Nevertheless, the variation in how people respond to the environment that promotes physical inactivity and intake of high-calorie foods suggests that genes do play a role in the development of obesity.',
'When chemicals in solution react, the proper way of writing the chemical formulas of the dissolved ionic compounds is in terms of the dissociated ions, not the complete ionic formula. A complete ionic equation is a chemical equation in which the dissolved ionic compounds are written as separated ions. Solubility rules are very useful in determining which ionic compounds are dissolved and which are not. For example, when NaCl(aq) reacts with AgNO3(aq) in a double-replacement reaction to precipitate AgCl(s) and form NaNO3(aq), the complete ionic equation includes NaCl, AgNO3, and NaNO3 written as separated ions:.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.3775 |
| **spearman_cosine** | **0.4057** |
| pearson_manhattan | 0.3862 |
| spearman_manhattan | 0.4059 |
| pearson_euclidean | 0.3865 |
| spearman_euclidean | 0.4057 |
| pearson_dot | 0.3775 |
| spearman_dot | 0.4056 |
| pearson_max | 0.3865 |
| spearman_max | 0.4059 |
#### Binary Classification
* Dataset: `allNLI-dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.6758 |
| cosine_accuracy_threshold | 0.9428 |
| cosine_f1 | 0.5225 |
| cosine_f1_threshold | 0.8047 |
| cosine_precision | 0.3796 |
| cosine_recall | 0.8382 |
| cosine_ap | 0.4369 |
| dot_accuracy | 0.6758 |
| dot_accuracy_threshold | 724.108 |
| dot_f1 | 0.5225 |
| dot_f1_threshold | 618.075 |
| dot_precision | 0.3796 |
| dot_recall | 0.8382 |
| dot_ap | 0.4368 |
| manhattan_accuracy | 0.6777 |
| manhattan_accuracy_threshold | 223.6764 |
| manhattan_f1 | 0.524 |
| manhattan_f1_threshold | 372.314 |
| manhattan_precision | 0.3848 |
| manhattan_recall | 0.8208 |
| manhattan_ap | 0.4389 |
| euclidean_accuracy | 0.6758 |
| euclidean_accuracy_threshold | 9.3773 |
| euclidean_f1 | 0.5225 |
| euclidean_f1_threshold | 17.321 |
| euclidean_precision | 0.3796 |
| euclidean_recall | 0.8382 |
| euclidean_ap | 0.4369 |
| max_accuracy | 0.6777 |
| max_accuracy_threshold | 724.108 |
| max_f1 | 0.524 |
| max_f1_threshold | 618.075 |
| max_precision | 0.3848 |
| max_recall | 0.8382 |
| **max_ap** | **0.4389** |
#### Binary Classification
* Dataset: `Qnli-dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.6465 |
| cosine_accuracy_threshold | 0.8057 |
| cosine_f1 | 0.6688 |
| cosine_f1_threshold | 0.7187 |
| cosine_precision | 0.5389 |
| cosine_recall | 0.8814 |
| cosine_ap | 0.6721 |
| dot_accuracy | 0.6465 |
| dot_accuracy_threshold | 618.8644 |
| dot_f1 | 0.6688 |
| dot_f1_threshold | 552.026 |
| dot_precision | 0.5389 |
| dot_recall | 0.8814 |
| dot_ap | 0.6721 |
| manhattan_accuracy | 0.6484 |
| manhattan_accuracy_threshold | 386.5891 |
| manhattan_f1 | 0.6646 |
| manhattan_f1_threshold | 462.6091 |
| manhattan_precision | 0.5303 |
| manhattan_recall | 0.8898 |
| manhattan_ap | 0.6725 |
| euclidean_accuracy | 0.6465 |
| euclidean_accuracy_threshold | 17.2753 |
| euclidean_f1 | 0.6688 |
| euclidean_f1_threshold | 20.7871 |
| euclidean_precision | 0.5389 |
| euclidean_recall | 0.8814 |
| euclidean_ap | 0.6721 |
| max_accuracy | 0.6484 |
| max_accuracy_threshold | 618.8644 |
| max_f1 | 0.6688 |
| max_f1_threshold | 552.026 |
| max_precision | 0.5389 |
| max_recall | 0.8898 |
| **max_ap** | **0.6725** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 32,500 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 29.39 tokens</li><li>max: 323 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 54.42 tokens</li><li>max: 423 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>In which London road is Harrod’s department store?</code> | <code>Harrods, Brompton Road, London | Shopping/Department Stores in London | LondonTown.com Opening Times Britain's most famous store and possibly the most famous store in the world, Harrods features on many tourist 'must-see' lists - and with good reason. Its humble beginnings date back to 1849, when Charles Henry Harrod opened a small East End grocer and tea merchant business that emphasised impeccable service over value. Today, it occupies a vast seven floor site in London's fashionable Knightsbridge and boasts a phenomenal range of products from pianos and cooking pans to fashion and perfumery. The luxurious Urban Retreat can be found on the sixth floor while newer departments include Superbrands, with 17 boutiques from top international designers, and Salon du Parfums, housing some of the most exceptional and exclusive perfumes in the world. The Food Hall is ostentatious to the core and mouth-wateringly exotic, and the store as a whole is well served with 27 restaurants. At Christmas time the Brompton Road windows are transformed into a magical winter wonderland and Father Christmas takes up residence at the enchanting Christmas Grotto. The summer and winter sales are calendar events in the shopping year, and although both sales are extremely crowded there are some great bargains on offer. �</code> |
| <code>e.	in solids the atoms are closely locked in position and can only vibrate, in liquids the atoms and molecules are more loosely connected and can collide with and move past one another, while in gases the atoms or molecules are free to move independently, colliding frequently.</code> | <code>Within a substance, atoms that collide frequently and move independently of one another are most likely in a gas</code> |
| <code>Joe Cole was unable to join West Bromwich Albion .</code> | <code>On 16th October Joe Cole took a long hard look at himself realising that he would never get the opportunity to join West Bromwich Albion and joined Coventry City instead.</code> |
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.025}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 256
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 3.3333333333333337e-06}
- `warmup_ratio`: 0.33
- `save_safetensors`: False
- `fp16`: True
- `push_to_hub`: True
- `hub_model_id`: bobox/DeBERTa3-s-CustomPoolin-toytest4-step1-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 256
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 3.3333333333333337e-06}
- `warmup_ratio`: 0.33
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: False
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: bobox/DeBERTa3-s-CustomPoolin-toytest4-step1-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | sts-test_spearman_cosine | allNLI-dev_max_ap | Qnli-dev_max_ap |
|:------:|:----:|:-------------:|:------------------------:|:-----------------:|:---------------:|
| 0.0010 | 1 | 6.0688 | - | - | - |
| 0.0020 | 2 | 7.5576 | - | - | - |
| 0.0030 | 3 | 4.6849 | - | - | - |
| 0.0039 | 4 | 5.4503 | - | - | - |
| 0.0049 | 5 | 5.6057 | - | - | - |
| 0.0059 | 6 | 6.3049 | - | - | - |
| 0.0069 | 7 | 6.8336 | - | - | - |
| 0.0079 | 8 | 5.0777 | - | - | - |
| 0.0089 | 9 | 4.8358 | - | - | - |
| 0.0098 | 10 | 4.641 | - | - | - |
| 0.0108 | 11 | 4.828 | - | - | - |
| 0.0118 | 12 | 5.2269 | - | - | - |
| 0.0128 | 13 | 5.6772 | - | - | - |
| 0.0138 | 14 | 5.1422 | - | - | - |
| 0.0148 | 15 | 6.2469 | - | - | - |
| 0.0157 | 16 | 4.6802 | - | - | - |
| 0.0167 | 17 | 4.5492 | - | - | - |
| 0.0177 | 18 | 4.8062 | - | - | - |
| 0.0187 | 19 | 7.5141 | - | - | - |
| 0.0197 | 20 | 5.5202 | - | - | - |
| 0.0207 | 21 | 6.5025 | - | - | - |
| 0.0217 | 22 | 7.318 | - | - | - |
| 0.0226 | 23 | 4.6458 | - | - | - |
| 0.0236 | 24 | 4.6191 | - | - | - |
| 0.0246 | 25 | 4.3159 | - | - | - |
| 0.0256 | 26 | 6.3677 | - | - | - |
| 0.0266 | 27 | 5.6052 | - | - | - |
| 0.0276 | 28 | 4.196 | - | - | - |
| 0.0285 | 29 | 4.4802 | - | - | - |
| 0.0295 | 30 | 4.9193 | - | - | - |
| 0.0305 | 31 | 4.0996 | - | - | - |
| 0.0315 | 32 | 5.6307 | - | - | - |
| 0.0325 | 33 | 4.5745 | - | - | - |
| 0.0335 | 34 | 4.4514 | - | - | - |
| 0.0344 | 35 | 4.0617 | - | - | - |
| 0.0354 | 36 | 5.0298 | - | - | - |
| 0.0364 | 37 | 3.9815 | - | - | - |
| 0.0374 | 38 | 4.0871 | - | - | - |
| 0.0384 | 39 | 4.2378 | - | - | - |
| 0.0394 | 40 | 3.8226 | - | - | - |
| 0.0404 | 41 | 4.3519 | - | - | - |
| 0.0413 | 42 | 3.6345 | - | - | - |
| 0.0423 | 43 | 5.0829 | - | - | - |
| 0.0433 | 44 | 4.6701 | - | - | - |
| 0.0443 | 45 | 4.1371 | - | - | - |
| 0.0453 | 46 | 4.2418 | - | - | - |
| 0.0463 | 47 | 4.4766 | - | - | - |
| 0.0472 | 48 | 4.4797 | - | - | - |
| 0.0482 | 49 | 3.8471 | - | - | - |
| 0.0492 | 50 | 4.3194 | - | - | - |
| 0.0502 | 51 | 3.9426 | - | - | - |
| 0.0512 | 52 | 3.5333 | - | - | - |
| 0.0522 | 53 | 4.2426 | - | - | - |
| 0.0531 | 54 | 3.9816 | - | - | - |
| 0.0541 | 55 | 3.663 | - | - | - |
| 0.0551 | 56 | 3.9057 | - | - | - |
| 0.0561 | 57 | 4.0345 | - | - | - |
| 0.0571 | 58 | 3.5233 | - | - | - |
| 0.0581 | 59 | 3.7999 | - | - | - |
| 0.0591 | 60 | 3.1885 | - | - | - |
| 0.0600 | 61 | 3.6013 | - | - | - |
| 0.0610 | 62 | 3.392 | - | - | - |
| 0.0620 | 63 | 3.3814 | - | - | - |
| 0.0630 | 64 | 4.0428 | - | - | - |
| 0.0640 | 65 | 3.7825 | - | - | - |
| 0.0650 | 66 | 3.4181 | - | - | - |
| 0.0659 | 67 | 3.7793 | - | - | - |
| 0.0669 | 68 | 3.8344 | - | - | - |
| 0.0679 | 69 | 3.2165 | - | - | - |
| 0.0689 | 70 | 3.3811 | - | - | - |
| 0.0699 | 71 | 3.5984 | - | - | - |
| 0.0709 | 72 | 3.8583 | - | - | - |
| 0.0719 | 73 | 3.296 | - | - | - |
| 0.0728 | 74 | 2.7661 | - | - | - |
| 0.0738 | 75 | 2.9805 | - | - | - |
| 0.0748 | 76 | 2.566 | - | - | - |
| 0.0758 | 77 | 3.258 | - | - | - |
| 0.0768 | 78 | 3.3804 | - | - | - |
| 0.0778 | 79 | 2.8828 | - | - | - |
| 0.0787 | 80 | 3.1077 | - | - | - |
| 0.0797 | 81 | 2.9441 | - | - | - |
| 0.0807 | 82 | 2.9465 | - | - | - |
| 0.0817 | 83 | 2.7088 | - | - | - |
| 0.0827 | 84 | 2.9215 | - | - | - |
| 0.0837 | 85 | 3.4698 | - | - | - |
| 0.0846 | 86 | 2.2414 | - | - | - |
| 0.0856 | 87 | 3.1601 | - | - | - |
| 0.0866 | 88 | 2.7714 | - | - | - |
| 0.0876 | 89 | 3.0311 | - | - | - |
| 0.0886 | 90 | 3.0336 | - | - | - |
| 0.0896 | 91 | 1.9358 | - | - | - |
| 0.0906 | 92 | 2.6031 | - | - | - |
| 0.0915 | 93 | 2.7515 | - | - | - |
| 0.0925 | 94 | 2.8496 | - | - | - |
| 0.0935 | 95 | 1.8015 | - | - | - |
| 0.0945 | 96 | 2.8138 | - | - | - |
| 0.0955 | 97 | 2.0597 | - | - | - |
| 0.0965 | 98 | 2.1053 | - | - | - |
| 0.0974 | 99 | 2.6785 | - | - | - |
| 0.0984 | 100 | 2.588 | - | - | - |
| 0.0994 | 101 | 2.0099 | - | - | - |
| 0.1004 | 102 | 2.7947 | - | - | - |
| 0.1014 | 103 | 2.3274 | - | - | - |
| 0.1024 | 104 | 2.2545 | - | - | - |
| 0.1033 | 105 | 2.4575 | - | - | - |
| 0.1043 | 106 | 2.4413 | - | - | - |
| 0.1053 | 107 | 2.3185 | - | - | - |
| 0.1063 | 108 | 2.1577 | - | - | - |
| 0.1073 | 109 | 2.1278 | - | - | - |
| 0.1083 | 110 | 2.0967 | - | - | - |
| 0.1093 | 111 | 2.6142 | - | - | - |
| 0.1102 | 112 | 1.8553 | - | - | - |
| 0.1112 | 113 | 2.1523 | - | - | - |
| 0.1122 | 114 | 2.1726 | - | - | - |
| 0.1132 | 115 | 1.8564 | - | - | - |
| 0.1142 | 116 | 1.8413 | - | - | - |
| 0.1152 | 117 | 2.0441 | - | - | - |
| 0.1161 | 118 | 2.2159 | - | - | - |
| 0.1171 | 119 | 2.6779 | - | - | - |
| 0.1181 | 120 | 2.2976 | - | - | - |
| 0.1191 | 121 | 1.9407 | - | - | - |
| 0.1201 | 122 | 1.9019 | - | - | - |
| 0.1211 | 123 | 2.2149 | - | - | - |
| 0.1220 | 124 | 1.6823 | - | - | - |
| 0.1230 | 125 | 1.8402 | - | - | - |
| 0.1240 | 126 | 1.6914 | - | - | - |
| 0.125 | 127 | 2.1626 | - | - | - |
| 0.1260 | 128 | 1.6414 | - | - | - |
| 0.1270 | 129 | 2.2043 | - | - | - |
| 0.1280 | 130 | 1.9987 | - | - | - |
| 0.1289 | 131 | 1.8868 | - | - | - |
| 0.1299 | 132 | 1.8262 | - | - | - |
| 0.1309 | 133 | 2.0404 | - | - | - |
| 0.1319 | 134 | 1.9134 | - | - | - |
| 0.1329 | 135 | 2.3725 | - | - | - |
| 0.1339 | 136 | 1.4127 | - | - | - |
| 0.1348 | 137 | 1.6876 | - | - | - |
| 0.1358 | 138 | 1.8376 | - | - | - |
| 0.1368 | 139 | 1.6992 | - | - | - |
| 0.1378 | 140 | 1.5032 | - | - | - |
| 0.1388 | 141 | 2.0334 | - | - | - |
| 0.1398 | 142 | 2.3581 | - | - | - |
| 0.1407 | 143 | 1.4236 | - | - | - |
| 0.1417 | 144 | 2.202 | - | - | - |
| 0.1427 | 145 | 1.7654 | - | - | - |
| 0.1437 | 146 | 1.5748 | - | - | - |
| 0.1447 | 147 | 1.7996 | - | - | - |
| 0.1457 | 148 | 1.7517 | - | - | - |
| 0.1467 | 149 | 1.8933 | - | - | - |
| 0.1476 | 150 | 1.2836 | - | - | - |
| 0.1486 | 151 | 1.7145 | - | - | - |
| 0.1496 | 152 | 1.6499 | - | - | - |
| 0.1506 | 153 | 1.8273 | 0.4057 | 0.4389 | 0.6725 |
| 0.1516 | 154 | 2.2859 | - | - | - |
| 0.1526 | 155 | 1.0833 | - | - | - |
| 0.1535 | 156 | 1.6829 | - | - | - |
| 0.1545 | 157 | 2.1464 | - | - | - |
| 0.1555 | 158 | 1.745 | - | - | - |
| 0.1565 | 159 | 1.7319 | - | - | - |
| 0.1575 | 160 | 1.6968 | - | - | - |
| 0.1585 | 161 | 1.7401 | - | - | - |
| 0.1594 | 162 | 1.729 | - | - | - |
| 0.1604 | 163 | 2.0782 | - | - | - |
| 0.1614 | 164 | 2.6545 | - | - | - |
| 0.1624 | 165 | 1.4045 | - | - | - |
| 0.1634 | 166 | 1.2937 | - | - | - |
| 0.1644 | 167 | 1.1171 | - | - | - |
| 0.1654 | 168 | 1.3537 | - | - | - |
| 0.1663 | 169 | 1.7028 | - | - | - |
| 0.1673 | 170 | 1.4143 | - | - | - |
| 0.1683 | 171 | 1.8648 | - | - | - |
| 0.1693 | 172 | 1.6768 | - | - | - |
| 0.1703 | 173 | 1.9528 | - | - | - |
| 0.1713 | 174 | 1.1718 | - | - | - |
| 0.1722 | 175 | 1.8176 | - | - | - |
| 0.1732 | 176 | 0.8439 | - | - | - |
| 0.1742 | 177 | 1.5092 | - | - | - |
| 0.1752 | 178 | 1.1947 | - | - | - |
| 0.1762 | 179 | 1.6395 | - | - | - |
| 0.1772 | 180 | 1.4394 | - | - | - |
| 0.1781 | 181 | 1.7548 | - | - | - |
| 0.1791 | 182 | 1.1181 | - | - | - |
| 0.1801 | 183 | 1.0271 | - | - | - |
| 0.1811 | 184 | 2.3108 | - | - | - |
| 0.1821 | 185 | 2.1242 | - | - | - |
| 0.1831 | 186 | 1.9822 | - | - | - |
| 0.1841 | 187 | 2.3605 | - | - | - |
| 0.1850 | 188 | 1.5251 | - | - | - |
| 0.1860 | 189 | 1.2351 | - | - | - |
| 0.1870 | 190 | 1.5859 | - | - | - |
| 0.1880 | 191 | 1.8056 | - | - | - |
| 0.1890 | 192 | 1.349 | - | - | - |
| 0.1900 | 193 | 0.893 | - | - | - |
| 0.1909 | 194 | 1.5122 | - | - | - |
| 0.1919 | 195 | 1.3875 | - | - | - |
| 0.1929 | 196 | 1.29 | - | - | - |
| 0.1939 | 197 | 2.2931 | - | - | - |
| 0.1949 | 198 | 1.2663 | - | - | - |
| 0.1959 | 199 | 1.9712 | - | - | - |
| 0.1969 | 200 | 2.3307 | - | - | - |
| 0.1978 | 201 | 1.6544 | - | - | - |
| 0.1988 | 202 | 1.638 | - | - | - |
| 0.1998 | 203 | 1.3412 | - | - | - |
| 0.2008 | 204 | 1.4454 | - | - | - |
| 0.2018 | 205 | 1.5437 | - | - | - |
| 0.2028 | 206 | 1.4921 | - | - | - |
| 0.2037 | 207 | 1.4298 | - | - | - |
| 0.2047 | 208 | 1.6174 | - | - | - |
| 0.2057 | 209 | 1.4137 | - | - | - |
| 0.2067 | 210 | 1.5652 | - | - | - |
| 0.2077 | 211 | 1.1631 | - | - | - |
| 0.2087 | 212 | 1.2351 | - | - | - |
| 0.2096 | 213 | 1.7537 | - | - | - |
| 0.2106 | 214 | 1.3186 | - | - | - |
| 0.2116 | 215 | 1.2258 | - | - | - |
| 0.2126 | 216 | 0.7695 | - | - | - |
| 0.2136 | 217 | 1.2775 | - | - | - |
| 0.2146 | 218 | 1.6795 | - | - | - |
| 0.2156 | 219 | 1.2862 | - | - | - |
| 0.2165 | 220 | 1.1723 | - | - | - |
| 0.2175 | 221 | 1.3322 | - | - | - |
| 0.2185 | 222 | 1.7564 | - | - | - |
| 0.2195 | 223 | 1.1071 | - | - | - |
| 0.2205 | 224 | 1.2011 | - | - | - |
| 0.2215 | 225 | 1.2303 | - | - | - |
| 0.2224 | 226 | 1.212 | - | - | - |
| 0.2234 | 227 | 1.0117 | - | - | - |
| 0.2244 | 228 | 1.1907 | - | - | - |
| 0.2254 | 229 | 2.1293 | - | - | - |
| 0.2264 | 230 | 1.3063 | - | - | - |
| 0.2274 | 231 | 1.2841 | - | - | - |
| 0.2283 | 232 | 1.3778 | - | - | - |
| 0.2293 | 233 | 1.2242 | - | - | - |
| 0.2303 | 234 | 0.9227 | - | - | - |
| 0.2313 | 235 | 1.2221 | - | - | - |
| 0.2323 | 236 | 2.1041 | - | - | - |
| 0.2333 | 237 | 1.3341 | - | - | - |
| 0.2343 | 238 | 1.0876 | - | - | - |
| 0.2352 | 239 | 1.3328 | - | - | - |
| 0.2362 | 240 | 1.2958 | - | - | - |
| 0.2372 | 241 | 1.1522 | - | - | - |
| 0.2382 | 242 | 1.7942 | - | - | - |
| 0.2392 | 243 | 1.1325 | - | - | - |
| 0.2402 | 244 | 1.6466 | - | - | - |
| 0.2411 | 245 | 1.4608 | - | - | - |
| 0.2421 | 246 | 0.6375 | - | - | - |
| 0.2431 | 247 | 2.0177 | - | - | - |
| 0.2441 | 248 | 1.2069 | - | - | - |
| 0.2451 | 249 | 0.7639 | - | - | - |
| 0.2461 | 250 | 1.3465 | - | - | - |
| 0.2470 | 251 | 1.064 | - | - | - |
| 0.2480 | 252 | 1.3757 | - | - | - |
| 0.2490 | 253 | 1.612 | - | - | - |
| 0.25 | 254 | 0.7917 | - | - | - |
| 0.2510 | 255 | 1.5515 | - | - | - |
| 0.2520 | 256 | 0.799 | - | - | - |
| 0.2530 | 257 | 0.9882 | - | - | - |
| 0.2539 | 258 | 1.1814 | - | - | - |
| 0.2549 | 259 | 0.6394 | - | - | - |
| 0.2559 | 260 | 1.4756 | - | - | - |
| 0.2569 | 261 | 0.5338 | - | - | - |
| 0.2579 | 262 | 0.9779 | - | - | - |
| 0.2589 | 263 | 1.5307 | - | - | - |
| 0.2598 | 264 | 1.1213 | - | - | - |
| 0.2608 | 265 | 0.9482 | - | - | - |
| 0.2618 | 266 | 0.9599 | - | - | - |
| 0.2628 | 267 | 1.4455 | - | - | - |
| 0.2638 | 268 | 1.6496 | - | - | - |
| 0.2648 | 269 | 0.7402 | - | - | - |
| 0.2657 | 270 | 0.7835 | - | - | - |
| 0.2667 | 271 | 0.7821 | - | - | - |
| 0.2677 | 272 | 1.5422 | - | - | - |
| 0.2687 | 273 | 1.0995 | - | - | - |
| 0.2697 | 274 | 1.378 | - | - | - |
| 0.2707 | 275 | 1.3562 | - | - | - |
| 0.2717 | 276 | 0.7376 | - | - | - |
| 0.2726 | 277 | 1.1678 | - | - | - |
| 0.2736 | 278 | 1.2989 | - | - | - |
| 0.2746 | 279 | 1.9559 | - | - | - |
| 0.2756 | 280 | 1.1237 | - | - | - |
| 0.2766 | 281 | 0.952 | - | - | - |
| 0.2776 | 282 | 1.6629 | - | - | - |
| 0.2785 | 283 | 1.871 | - | - | - |
| 0.2795 | 284 | 1.5946 | - | - | - |
| 0.2805 | 285 | 1.4456 | - | - | - |
| 0.2815 | 286 | 1.4085 | - | - | - |
| 0.2825 | 287 | 1.1394 | - | - | - |
| 0.2835 | 288 | 1.0315 | - | - | - |
| 0.2844 | 289 | 1.488 | - | - | - |
| 0.2854 | 290 | 1.4006 | - | - | - |
| 0.2864 | 291 | 0.9237 | - | - | - |
| 0.2874 | 292 | 1.163 | - | - | - |
| 0.2884 | 293 | 1.7037 | - | - | - |
| 0.2894 | 294 | 0.8715 | - | - | - |
| 0.2904 | 295 | 1.2101 | - | - | - |
| 0.2913 | 296 | 1.1179 | - | - | - |
| 0.2923 | 297 | 1.3986 | - | - | - |
| 0.2933 | 298 | 1.7068 | - | - | - |
| 0.2943 | 299 | 0.8695 | - | - | - |
| 0.2953 | 300 | 1.3778 | - | - | - |
| 0.2963 | 301 | 1.2834 | - | - | - |
| 0.2972 | 302 | 0.8123 | - | - | - |
| 0.2982 | 303 | 1.6521 | - | - | - |
| 0.2992 | 304 | 1.1064 | - | - | - |
| 0.3002 | 305 | 0.9578 | - | - | - |
</details>
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.2
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### GISTEmbedLoss
```bibtex
@misc{solatorio2024gistembed,
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
author={Aivin V. Solatorio},
year={2024},
eprint={2402.16829},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |