File size: 67,703 Bytes
a952843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
---
base_model: microsoft/deberta-v3-small
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:32500
- loss:GISTEmbedLoss
widget:
- source_sentence: phase changes do not change
  sentences:
  - The major Atlantic slave trading nations, ordered by trade volume, were the Portuguese,
    the British, the Spanish, the French, the Dutch, and the Danish. Several had established
    outposts on the African coast where they purchased slaves from local African leaders.
  - "phase changes do not change mass. Particles have mass, but mass is energy. \n\
    \ phase changes do not change  energy"
  - According to the U.S. Census Bureau , the county is a total area of , which has
    land and ( 0.2 % ) is water .
- source_sentence: what jobs can you get with a bachelor degree in anthropology?
  sentences:
  - To determine the atomic weight of an element, you should add up protons and neutrons.
  - '[''Paleontologist*'', ''Archaeologist*'', ''University Professor*'', ''Market
    Research Analyst*'', ''Primatologist.'', ''Forensic Scientist*'', ''Medical Anthropologist.'',
    ''Museum Technician.'']'
  - The wingspan flies , the moth comes depending on the location from July to August
    .
- source_sentence: Identify different forms of energy (e.g., light, sound, heat).
  sentences:
  - '`` Irreplaceable '''' '''' remained on the chart for thirty weeks , and was certified
    double-platinum by the Recording Industry Association of America ( RIAA ) , denoting
    sales of two million downloads , and had sold over 3,139,000 paid digital downloads
    in the US as of October 2012 , according to Nielsen SoundScan . '''''
  - On Rotten Tomatoes , the film has a rating of 63 % , based on 87 reviews , with
    an average rating of 5.9/10 .
  - Heat, light, and sound are all different forms of energy.
- source_sentence: what is so small it can only be seen with an electron microscope?
  sentences:
  - "Viruses are so small that they can be seen only with an electron microscope..\
    \ Where most viruses are DNA, HIV is an RNA virus. \n HIV is so small it can only\
    \ be seen with an electron microscope"
  - The development of modern lasers has opened many doors to both research and applications.
    A laser beam was used to measure the distance from the Earth to the moon. Lasers
    are important components of CD players. As the image above illustrates, lasers
    can provide precise focusing of beams to selectively destroy cancer cells in patients.
    The ability of a laser to focus precisely is due to high-quality crystals that
    help give rise to the laser beam. A variety of techniques are used to manufacture
    pure crystals for use in lasers.
  - Discussion for (a) This value is the net work done on the package. The person
    actually does more work than this, because friction opposes the motion. Friction
    does negative work and removes some of the energy the person expends and converts
    it to thermal energy. The net work equals the sum of the work done by each individual
    force. Strategy and Concept for (b) The forces acting on the package are gravity,
    the normal force, the force of friction, and the applied force. The normal force
    and force of gravity are each perpendicular to the displacement, and therefore
    do no work. Solution for (b) The applied force does work.
- source_sentence: what aspects of your environment may relate to the epidemic of
    obesity
  sentences:
  - Jan Kromkamp ( born August 17 , 1980 in Makkinga , Netherlands ) is a Dutch footballer
    .
  - When chemicals in solution react, the proper way of writing the chemical formulas
    of the dissolved ionic compounds is in terms of the dissociated ions, not the
    complete ionic formula. A complete ionic equation is a chemical equation in which
    the dissolved ionic compounds are written as separated ions. Solubility rules
    are very useful in determining which ionic compounds are dissolved and which are
    not. For example, when NaCl(aq) reacts with AgNO3(aq) in a double-replacement
    reaction to precipitate AgCl(s) and form NaNO3(aq), the complete ionic equation
    includes NaCl, AgNO3, and NaNO3 written as separated ions:.
  - Genetic changes in human populations occur too slowly to be responsible for the
    obesity epidemic. Nevertheless, the variation in how people respond to the environment
    that promotes physical inactivity and intake of high-calorie foods suggests that
    genes do play a role in the development of obesity.
model-index:
- name: SentenceTransformer based on microsoft/deberta-v3-small
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test
      type: sts-test
    metrics:
    - type: pearson_cosine
      value: 0.3774946012125992
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.4056589966976888
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.3861982631744407
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.4059364545183154
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.38652243004790016
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.4056589966976888
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.3774648453085433
      name: Pearson Dot
    - type: spearman_dot
      value: 0.40563469676275316
      name: Spearman Dot
    - type: pearson_max
      value: 0.38652243004790016
      name: Pearson Max
    - type: spearman_max
      value: 0.4059364545183154
      name: Spearman Max
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: allNLI dev
      type: allNLI-dev
    metrics:
    - type: cosine_accuracy
      value: 0.67578125
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.9427558183670044
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.5225225225225225
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.8046966791152954
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.3795811518324607
      name: Cosine Precision
    - type: cosine_recall
      value: 0.838150289017341
      name: Cosine Recall
    - type: cosine_ap
      value: 0.4368751759846574
      name: Cosine Ap
    - type: dot_accuracy
      value: 0.67578125
      name: Dot Accuracy
    - type: dot_accuracy_threshold
      value: 724.1080322265625
      name: Dot Accuracy Threshold
    - type: dot_f1
      value: 0.5225225225225225
      name: Dot F1
    - type: dot_f1_threshold
      value: 618.074951171875
      name: Dot F1 Threshold
    - type: dot_precision
      value: 0.3795811518324607
      name: Dot Precision
    - type: dot_recall
      value: 0.838150289017341
      name: Dot Recall
    - type: dot_ap
      value: 0.436842886797982
      name: Dot Ap
    - type: manhattan_accuracy
      value: 0.677734375
      name: Manhattan Accuracy
    - type: manhattan_accuracy_threshold
      value: 223.6764373779297
      name: Manhattan Accuracy Threshold
    - type: manhattan_f1
      value: 0.5239852398523985
      name: Manhattan F1
    - type: manhattan_f1_threshold
      value: 372.31396484375
      name: Manhattan F1 Threshold
    - type: manhattan_precision
      value: 0.38482384823848237
      name: Manhattan Precision
    - type: manhattan_recall
      value: 0.8208092485549133
      name: Manhattan Recall
    - type: manhattan_ap
      value: 0.43892484929307635
      name: Manhattan Ap
    - type: euclidean_accuracy
      value: 0.67578125
      name: Euclidean Accuracy
    - type: euclidean_accuracy_threshold
      value: 9.377331733703613
      name: Euclidean Accuracy Threshold
    - type: euclidean_f1
      value: 0.5225225225225225
      name: Euclidean F1
    - type: euclidean_f1_threshold
      value: 17.321048736572266
      name: Euclidean F1 Threshold
    - type: euclidean_precision
      value: 0.3795811518324607
      name: Euclidean Precision
    - type: euclidean_recall
      value: 0.838150289017341
      name: Euclidean Recall
    - type: euclidean_ap
      value: 0.4368602200677977
      name: Euclidean Ap
    - type: max_accuracy
      value: 0.677734375
      name: Max Accuracy
    - type: max_accuracy_threshold
      value: 724.1080322265625
      name: Max Accuracy Threshold
    - type: max_f1
      value: 0.5239852398523985
      name: Max F1
    - type: max_f1_threshold
      value: 618.074951171875
      name: Max F1 Threshold
    - type: max_precision
      value: 0.38482384823848237
      name: Max Precision
    - type: max_recall
      value: 0.838150289017341
      name: Max Recall
    - type: max_ap
      value: 0.43892484929307635
      name: Max Ap
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: Qnli dev
      type: Qnli-dev
    metrics:
    - type: cosine_accuracy
      value: 0.646484375
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.8057259321212769
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.6688102893890675
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.7187118530273438
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.538860103626943
      name: Cosine Precision
    - type: cosine_recall
      value: 0.8813559322033898
      name: Cosine Recall
    - type: cosine_ap
      value: 0.6720663622193426
      name: Cosine Ap
    - type: dot_accuracy
      value: 0.646484375
      name: Dot Accuracy
    - type: dot_accuracy_threshold
      value: 618.8643798828125
      name: Dot Accuracy Threshold
    - type: dot_f1
      value: 0.6688102893890675
      name: Dot F1
    - type: dot_f1_threshold
      value: 552.0260009765625
      name: Dot F1 Threshold
    - type: dot_precision
      value: 0.538860103626943
      name: Dot Precision
    - type: dot_recall
      value: 0.8813559322033898
      name: Dot Recall
    - type: dot_ap
      value: 0.672083506527328
      name: Dot Ap
    - type: manhattan_accuracy
      value: 0.6484375
      name: Manhattan Accuracy
    - type: manhattan_accuracy_threshold
      value: 386.58905029296875
      name: Manhattan Accuracy Threshold
    - type: manhattan_f1
      value: 0.6645569620253164
      name: Manhattan F1
    - type: manhattan_f1_threshold
      value: 462.609130859375
      name: Manhattan F1 Threshold
    - type: manhattan_precision
      value: 0.5303030303030303
      name: Manhattan Precision
    - type: manhattan_recall
      value: 0.8898305084745762
      name: Manhattan Recall
    - type: manhattan_ap
      value: 0.6724653688821339
      name: Manhattan Ap
    - type: euclidean_accuracy
      value: 0.646484375
      name: Euclidean Accuracy
    - type: euclidean_accuracy_threshold
      value: 17.27533721923828
      name: Euclidean Accuracy Threshold
    - type: euclidean_f1
      value: 0.6688102893890675
      name: Euclidean F1
    - type: euclidean_f1_threshold
      value: 20.787063598632812
      name: Euclidean F1 Threshold
    - type: euclidean_precision
      value: 0.538860103626943
      name: Euclidean Precision
    - type: euclidean_recall
      value: 0.8813559322033898
      name: Euclidean Recall
    - type: euclidean_ap
      value: 0.6720591998758361
      name: Euclidean Ap
    - type: max_accuracy
      value: 0.6484375
      name: Max Accuracy
    - type: max_accuracy_threshold
      value: 618.8643798828125
      name: Max Accuracy Threshold
    - type: max_f1
      value: 0.6688102893890675
      name: Max F1
    - type: max_f1_threshold
      value: 552.0260009765625
      name: Max F1 Threshold
    - type: max_precision
      value: 0.538860103626943
      name: Max Precision
    - type: max_recall
      value: 0.8898305084745762
      name: Max Recall
    - type: max_ap
      value: 0.6724653688821339
      name: Max Ap
---

# SentenceTransformer based on microsoft/deberta-v3-small

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) <!-- at revision a36c739020e01763fe789b4b85e2df55d6180012 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model 
  (1): AdvancedWeightedPooling(
    (alpha_dropout_layer): Dropout(p=0.05, inplace=False)
    (gate_dropout_layer): Dropout(p=0.0, inplace=False)
    (linear_cls_Qpj): Linear(in_features=768, out_features=768, bias=True)
    (linear_attnOut): Linear(in_features=768, out_features=768, bias=True)
    (mha): MultiheadAttention(
      (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
    )
    (layernorm_output): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
    (layernorm_weightedPooing): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
    (layernorm_attnOut): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
  )
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTa3-s-CustomPoolin-toytest4-step1-checkpoints-tmp")
# Run inference
sentences = [
    'what aspects of your environment may relate to the epidemic of obesity',
    'Genetic changes in human populations occur too slowly to be responsible for the obesity epidemic. Nevertheless, the variation in how people respond to the environment that promotes physical inactivity and intake of high-calorie foods suggests that genes do play a role in the development of obesity.',
    'When chemicals in solution react, the proper way of writing the chemical formulas of the dissolved ionic compounds is in terms of the dissociated ions, not the complete ionic formula. A complete ionic equation is a chemical equation in which the dissolved ionic compounds are written as separated ions. Solubility rules are very useful in determining which ionic compounds are dissolved and which are not. For example, when NaCl(aq) reacts with AgNO3(aq) in a double-replacement reaction to precipitate AgCl(s) and form NaNO3(aq), the complete ionic equation includes NaCl, AgNO3, and NaNO3 written as separated ions:.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.3775     |
| **spearman_cosine** | **0.4057** |
| pearson_manhattan   | 0.3862     |
| spearman_manhattan  | 0.4059     |
| pearson_euclidean   | 0.3865     |
| spearman_euclidean  | 0.4057     |
| pearson_dot         | 0.3775     |
| spearman_dot        | 0.4056     |
| pearson_max         | 0.3865     |
| spearman_max        | 0.4059     |

#### Binary Classification
* Dataset: `allNLI-dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)

| Metric                       | Value      |
|:-----------------------------|:-----------|
| cosine_accuracy              | 0.6758     |
| cosine_accuracy_threshold    | 0.9428     |
| cosine_f1                    | 0.5225     |
| cosine_f1_threshold          | 0.8047     |
| cosine_precision             | 0.3796     |
| cosine_recall                | 0.8382     |
| cosine_ap                    | 0.4369     |
| dot_accuracy                 | 0.6758     |
| dot_accuracy_threshold       | 724.108    |
| dot_f1                       | 0.5225     |
| dot_f1_threshold             | 618.075    |
| dot_precision                | 0.3796     |
| dot_recall                   | 0.8382     |
| dot_ap                       | 0.4368     |
| manhattan_accuracy           | 0.6777     |
| manhattan_accuracy_threshold | 223.6764   |
| manhattan_f1                 | 0.524      |
| manhattan_f1_threshold       | 372.314    |
| manhattan_precision          | 0.3848     |
| manhattan_recall             | 0.8208     |
| manhattan_ap                 | 0.4389     |
| euclidean_accuracy           | 0.6758     |
| euclidean_accuracy_threshold | 9.3773     |
| euclidean_f1                 | 0.5225     |
| euclidean_f1_threshold       | 17.321     |
| euclidean_precision          | 0.3796     |
| euclidean_recall             | 0.8382     |
| euclidean_ap                 | 0.4369     |
| max_accuracy                 | 0.6777     |
| max_accuracy_threshold       | 724.108    |
| max_f1                       | 0.524      |
| max_f1_threshold             | 618.075    |
| max_precision                | 0.3848     |
| max_recall                   | 0.8382     |
| **max_ap**                   | **0.4389** |

#### Binary Classification
* Dataset: `Qnli-dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)

| Metric                       | Value      |
|:-----------------------------|:-----------|
| cosine_accuracy              | 0.6465     |
| cosine_accuracy_threshold    | 0.8057     |
| cosine_f1                    | 0.6688     |
| cosine_f1_threshold          | 0.7187     |
| cosine_precision             | 0.5389     |
| cosine_recall                | 0.8814     |
| cosine_ap                    | 0.6721     |
| dot_accuracy                 | 0.6465     |
| dot_accuracy_threshold       | 618.8644   |
| dot_f1                       | 0.6688     |
| dot_f1_threshold             | 552.026    |
| dot_precision                | 0.5389     |
| dot_recall                   | 0.8814     |
| dot_ap                       | 0.6721     |
| manhattan_accuracy           | 0.6484     |
| manhattan_accuracy_threshold | 386.5891   |
| manhattan_f1                 | 0.6646     |
| manhattan_f1_threshold       | 462.6091   |
| manhattan_precision          | 0.5303     |
| manhattan_recall             | 0.8898     |
| manhattan_ap                 | 0.6725     |
| euclidean_accuracy           | 0.6465     |
| euclidean_accuracy_threshold | 17.2753    |
| euclidean_f1                 | 0.6688     |
| euclidean_f1_threshold       | 20.7871    |
| euclidean_precision          | 0.5389     |
| euclidean_recall             | 0.8814     |
| euclidean_ap                 | 0.6721     |
| max_accuracy                 | 0.6484     |
| max_accuracy_threshold       | 618.8644   |
| max_f1                       | 0.6688     |
| max_f1_threshold             | 552.026    |
| max_precision                | 0.5389     |
| max_recall                   | 0.8898     |
| **max_ap**                   | **0.6725** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 32,500 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 4 tokens</li><li>mean: 29.39 tokens</li><li>max: 323 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 54.42 tokens</li><li>max: 423 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                                                                                                                             | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>In which London road is Harrod’s department store?</code>                                                                                                                                                                                                                                       | <code>Harrods, Brompton Road, London | Shopping/Department Stores in London | LondonTown.com Opening Times Britain's most famous store and possibly the most famous store in the world, Harrods features on many tourist 'must-see' lists - and with good reason. Its humble beginnings date back to 1849, when Charles Henry Harrod opened a small East End grocer and tea merchant business that emphasised impeccable service over value. Today, it occupies a vast seven floor site in London's fashionable Knightsbridge and boasts a phenomenal range of products from pianos and cooking pans to fashion and perfumery. The luxurious Urban Retreat can be found on the sixth floor while newer departments include Superbrands, with 17 boutiques from top international designers, and Salon du Parfums, housing some of the most exceptional and exclusive perfumes in the world. The Food Hall is ostentatious to the core and mouth-wateringly exotic, and the store as a whole is well served with 27 restaurants. At Christmas time the Brompton Road windows are transformed into a magical winter wonderland and Father Christmas takes up residence at the enchanting Christmas Grotto. The summer and winter sales are calendar events in the shopping year, and although both sales are extremely crowded there are some great bargains on offer. �</code> |
  | <code>e.&#9;in solids the atoms are closely locked in position and can only vibrate, in liquids the atoms and molecules are more loosely connected and can collide with and move past one another, while in gases the atoms or molecules are free to move independently, colliding frequently.</code> | <code>Within a substance, atoms that collide frequently and move independently of one another are most likely in a gas</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
  | <code>Joe Cole was unable to join West Bromwich Albion .</code>                                                                                                                                                                                                                                       | <code>On 16th October Joe Cole took a long hard look at himself realising that he would never get the opportunity to join West Bromwich Albion and joined Coventry City instead.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.025}
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 256
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 3.3333333333333337e-06}
- `warmup_ratio`: 0.33
- `save_safetensors`: False
- `fp16`: True
- `push_to_hub`: True
- `hub_model_id`: bobox/DeBERTa3-s-CustomPoolin-toytest4-step1-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 256
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: cosine_with_min_lr
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 3.3333333333333337e-06}
- `warmup_ratio`: 0.33
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: False
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: bobox/DeBERTa3-s-CustomPoolin-toytest4-step1-checkpoints-tmp
- `hub_strategy`: all_checkpoints
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch  | Step | Training Loss | sts-test_spearman_cosine | allNLI-dev_max_ap | Qnli-dev_max_ap |
|:------:|:----:|:-------------:|:------------------------:|:-----------------:|:---------------:|
| 0.0010 | 1    | 6.0688        | -                        | -                 | -               |
| 0.0020 | 2    | 7.5576        | -                        | -                 | -               |
| 0.0030 | 3    | 4.6849        | -                        | -                 | -               |
| 0.0039 | 4    | 5.4503        | -                        | -                 | -               |
| 0.0049 | 5    | 5.6057        | -                        | -                 | -               |
| 0.0059 | 6    | 6.3049        | -                        | -                 | -               |
| 0.0069 | 7    | 6.8336        | -                        | -                 | -               |
| 0.0079 | 8    | 5.0777        | -                        | -                 | -               |
| 0.0089 | 9    | 4.8358        | -                        | -                 | -               |
| 0.0098 | 10   | 4.641         | -                        | -                 | -               |
| 0.0108 | 11   | 4.828         | -                        | -                 | -               |
| 0.0118 | 12   | 5.2269        | -                        | -                 | -               |
| 0.0128 | 13   | 5.6772        | -                        | -                 | -               |
| 0.0138 | 14   | 5.1422        | -                        | -                 | -               |
| 0.0148 | 15   | 6.2469        | -                        | -                 | -               |
| 0.0157 | 16   | 4.6802        | -                        | -                 | -               |
| 0.0167 | 17   | 4.5492        | -                        | -                 | -               |
| 0.0177 | 18   | 4.8062        | -                        | -                 | -               |
| 0.0187 | 19   | 7.5141        | -                        | -                 | -               |
| 0.0197 | 20   | 5.5202        | -                        | -                 | -               |
| 0.0207 | 21   | 6.5025        | -                        | -                 | -               |
| 0.0217 | 22   | 7.318         | -                        | -                 | -               |
| 0.0226 | 23   | 4.6458        | -                        | -                 | -               |
| 0.0236 | 24   | 4.6191        | -                        | -                 | -               |
| 0.0246 | 25   | 4.3159        | -                        | -                 | -               |
| 0.0256 | 26   | 6.3677        | -                        | -                 | -               |
| 0.0266 | 27   | 5.6052        | -                        | -                 | -               |
| 0.0276 | 28   | 4.196         | -                        | -                 | -               |
| 0.0285 | 29   | 4.4802        | -                        | -                 | -               |
| 0.0295 | 30   | 4.9193        | -                        | -                 | -               |
| 0.0305 | 31   | 4.0996        | -                        | -                 | -               |
| 0.0315 | 32   | 5.6307        | -                        | -                 | -               |
| 0.0325 | 33   | 4.5745        | -                        | -                 | -               |
| 0.0335 | 34   | 4.4514        | -                        | -                 | -               |
| 0.0344 | 35   | 4.0617        | -                        | -                 | -               |
| 0.0354 | 36   | 5.0298        | -                        | -                 | -               |
| 0.0364 | 37   | 3.9815        | -                        | -                 | -               |
| 0.0374 | 38   | 4.0871        | -                        | -                 | -               |
| 0.0384 | 39   | 4.2378        | -                        | -                 | -               |
| 0.0394 | 40   | 3.8226        | -                        | -                 | -               |
| 0.0404 | 41   | 4.3519        | -                        | -                 | -               |
| 0.0413 | 42   | 3.6345        | -                        | -                 | -               |
| 0.0423 | 43   | 5.0829        | -                        | -                 | -               |
| 0.0433 | 44   | 4.6701        | -                        | -                 | -               |
| 0.0443 | 45   | 4.1371        | -                        | -                 | -               |
| 0.0453 | 46   | 4.2418        | -                        | -                 | -               |
| 0.0463 | 47   | 4.4766        | -                        | -                 | -               |
| 0.0472 | 48   | 4.4797        | -                        | -                 | -               |
| 0.0482 | 49   | 3.8471        | -                        | -                 | -               |
| 0.0492 | 50   | 4.3194        | -                        | -                 | -               |
| 0.0502 | 51   | 3.9426        | -                        | -                 | -               |
| 0.0512 | 52   | 3.5333        | -                        | -                 | -               |
| 0.0522 | 53   | 4.2426        | -                        | -                 | -               |
| 0.0531 | 54   | 3.9816        | -                        | -                 | -               |
| 0.0541 | 55   | 3.663         | -                        | -                 | -               |
| 0.0551 | 56   | 3.9057        | -                        | -                 | -               |
| 0.0561 | 57   | 4.0345        | -                        | -                 | -               |
| 0.0571 | 58   | 3.5233        | -                        | -                 | -               |
| 0.0581 | 59   | 3.7999        | -                        | -                 | -               |
| 0.0591 | 60   | 3.1885        | -                        | -                 | -               |
| 0.0600 | 61   | 3.6013        | -                        | -                 | -               |
| 0.0610 | 62   | 3.392         | -                        | -                 | -               |
| 0.0620 | 63   | 3.3814        | -                        | -                 | -               |
| 0.0630 | 64   | 4.0428        | -                        | -                 | -               |
| 0.0640 | 65   | 3.7825        | -                        | -                 | -               |
| 0.0650 | 66   | 3.4181        | -                        | -                 | -               |
| 0.0659 | 67   | 3.7793        | -                        | -                 | -               |
| 0.0669 | 68   | 3.8344        | -                        | -                 | -               |
| 0.0679 | 69   | 3.2165        | -                        | -                 | -               |
| 0.0689 | 70   | 3.3811        | -                        | -                 | -               |
| 0.0699 | 71   | 3.5984        | -                        | -                 | -               |
| 0.0709 | 72   | 3.8583        | -                        | -                 | -               |
| 0.0719 | 73   | 3.296         | -                        | -                 | -               |
| 0.0728 | 74   | 2.7661        | -                        | -                 | -               |
| 0.0738 | 75   | 2.9805        | -                        | -                 | -               |
| 0.0748 | 76   | 2.566         | -                        | -                 | -               |
| 0.0758 | 77   | 3.258         | -                        | -                 | -               |
| 0.0768 | 78   | 3.3804        | -                        | -                 | -               |
| 0.0778 | 79   | 2.8828        | -                        | -                 | -               |
| 0.0787 | 80   | 3.1077        | -                        | -                 | -               |
| 0.0797 | 81   | 2.9441        | -                        | -                 | -               |
| 0.0807 | 82   | 2.9465        | -                        | -                 | -               |
| 0.0817 | 83   | 2.7088        | -                        | -                 | -               |
| 0.0827 | 84   | 2.9215        | -                        | -                 | -               |
| 0.0837 | 85   | 3.4698        | -                        | -                 | -               |
| 0.0846 | 86   | 2.2414        | -                        | -                 | -               |
| 0.0856 | 87   | 3.1601        | -                        | -                 | -               |
| 0.0866 | 88   | 2.7714        | -                        | -                 | -               |
| 0.0876 | 89   | 3.0311        | -                        | -                 | -               |
| 0.0886 | 90   | 3.0336        | -                        | -                 | -               |
| 0.0896 | 91   | 1.9358        | -                        | -                 | -               |
| 0.0906 | 92   | 2.6031        | -                        | -                 | -               |
| 0.0915 | 93   | 2.7515        | -                        | -                 | -               |
| 0.0925 | 94   | 2.8496        | -                        | -                 | -               |
| 0.0935 | 95   | 1.8015        | -                        | -                 | -               |
| 0.0945 | 96   | 2.8138        | -                        | -                 | -               |
| 0.0955 | 97   | 2.0597        | -                        | -                 | -               |
| 0.0965 | 98   | 2.1053        | -                        | -                 | -               |
| 0.0974 | 99   | 2.6785        | -                        | -                 | -               |
| 0.0984 | 100  | 2.588         | -                        | -                 | -               |
| 0.0994 | 101  | 2.0099        | -                        | -                 | -               |
| 0.1004 | 102  | 2.7947        | -                        | -                 | -               |
| 0.1014 | 103  | 2.3274        | -                        | -                 | -               |
| 0.1024 | 104  | 2.2545        | -                        | -                 | -               |
| 0.1033 | 105  | 2.4575        | -                        | -                 | -               |
| 0.1043 | 106  | 2.4413        | -                        | -                 | -               |
| 0.1053 | 107  | 2.3185        | -                        | -                 | -               |
| 0.1063 | 108  | 2.1577        | -                        | -                 | -               |
| 0.1073 | 109  | 2.1278        | -                        | -                 | -               |
| 0.1083 | 110  | 2.0967        | -                        | -                 | -               |
| 0.1093 | 111  | 2.6142        | -                        | -                 | -               |
| 0.1102 | 112  | 1.8553        | -                        | -                 | -               |
| 0.1112 | 113  | 2.1523        | -                        | -                 | -               |
| 0.1122 | 114  | 2.1726        | -                        | -                 | -               |
| 0.1132 | 115  | 1.8564        | -                        | -                 | -               |
| 0.1142 | 116  | 1.8413        | -                        | -                 | -               |
| 0.1152 | 117  | 2.0441        | -                        | -                 | -               |
| 0.1161 | 118  | 2.2159        | -                        | -                 | -               |
| 0.1171 | 119  | 2.6779        | -                        | -                 | -               |
| 0.1181 | 120  | 2.2976        | -                        | -                 | -               |
| 0.1191 | 121  | 1.9407        | -                        | -                 | -               |
| 0.1201 | 122  | 1.9019        | -                        | -                 | -               |
| 0.1211 | 123  | 2.2149        | -                        | -                 | -               |
| 0.1220 | 124  | 1.6823        | -                        | -                 | -               |
| 0.1230 | 125  | 1.8402        | -                        | -                 | -               |
| 0.1240 | 126  | 1.6914        | -                        | -                 | -               |
| 0.125  | 127  | 2.1626        | -                        | -                 | -               |
| 0.1260 | 128  | 1.6414        | -                        | -                 | -               |
| 0.1270 | 129  | 2.2043        | -                        | -                 | -               |
| 0.1280 | 130  | 1.9987        | -                        | -                 | -               |
| 0.1289 | 131  | 1.8868        | -                        | -                 | -               |
| 0.1299 | 132  | 1.8262        | -                        | -                 | -               |
| 0.1309 | 133  | 2.0404        | -                        | -                 | -               |
| 0.1319 | 134  | 1.9134        | -                        | -                 | -               |
| 0.1329 | 135  | 2.3725        | -                        | -                 | -               |
| 0.1339 | 136  | 1.4127        | -                        | -                 | -               |
| 0.1348 | 137  | 1.6876        | -                        | -                 | -               |
| 0.1358 | 138  | 1.8376        | -                        | -                 | -               |
| 0.1368 | 139  | 1.6992        | -                        | -                 | -               |
| 0.1378 | 140  | 1.5032        | -                        | -                 | -               |
| 0.1388 | 141  | 2.0334        | -                        | -                 | -               |
| 0.1398 | 142  | 2.3581        | -                        | -                 | -               |
| 0.1407 | 143  | 1.4236        | -                        | -                 | -               |
| 0.1417 | 144  | 2.202         | -                        | -                 | -               |
| 0.1427 | 145  | 1.7654        | -                        | -                 | -               |
| 0.1437 | 146  | 1.5748        | -                        | -                 | -               |
| 0.1447 | 147  | 1.7996        | -                        | -                 | -               |
| 0.1457 | 148  | 1.7517        | -                        | -                 | -               |
| 0.1467 | 149  | 1.8933        | -                        | -                 | -               |
| 0.1476 | 150  | 1.2836        | -                        | -                 | -               |
| 0.1486 | 151  | 1.7145        | -                        | -                 | -               |
| 0.1496 | 152  | 1.6499        | -                        | -                 | -               |
| 0.1506 | 153  | 1.8273        | 0.4057                   | 0.4389            | 0.6725          |
| 0.1516 | 154  | 2.2859        | -                        | -                 | -               |
| 0.1526 | 155  | 1.0833        | -                        | -                 | -               |
| 0.1535 | 156  | 1.6829        | -                        | -                 | -               |
| 0.1545 | 157  | 2.1464        | -                        | -                 | -               |
| 0.1555 | 158  | 1.745         | -                        | -                 | -               |
| 0.1565 | 159  | 1.7319        | -                        | -                 | -               |
| 0.1575 | 160  | 1.6968        | -                        | -                 | -               |
| 0.1585 | 161  | 1.7401        | -                        | -                 | -               |
| 0.1594 | 162  | 1.729         | -                        | -                 | -               |
| 0.1604 | 163  | 2.0782        | -                        | -                 | -               |
| 0.1614 | 164  | 2.6545        | -                        | -                 | -               |
| 0.1624 | 165  | 1.4045        | -                        | -                 | -               |
| 0.1634 | 166  | 1.2937        | -                        | -                 | -               |
| 0.1644 | 167  | 1.1171        | -                        | -                 | -               |
| 0.1654 | 168  | 1.3537        | -                        | -                 | -               |
| 0.1663 | 169  | 1.7028        | -                        | -                 | -               |
| 0.1673 | 170  | 1.4143        | -                        | -                 | -               |
| 0.1683 | 171  | 1.8648        | -                        | -                 | -               |
| 0.1693 | 172  | 1.6768        | -                        | -                 | -               |
| 0.1703 | 173  | 1.9528        | -                        | -                 | -               |
| 0.1713 | 174  | 1.1718        | -                        | -                 | -               |
| 0.1722 | 175  | 1.8176        | -                        | -                 | -               |
| 0.1732 | 176  | 0.8439        | -                        | -                 | -               |
| 0.1742 | 177  | 1.5092        | -                        | -                 | -               |
| 0.1752 | 178  | 1.1947        | -                        | -                 | -               |
| 0.1762 | 179  | 1.6395        | -                        | -                 | -               |
| 0.1772 | 180  | 1.4394        | -                        | -                 | -               |
| 0.1781 | 181  | 1.7548        | -                        | -                 | -               |
| 0.1791 | 182  | 1.1181        | -                        | -                 | -               |
| 0.1801 | 183  | 1.0271        | -                        | -                 | -               |
| 0.1811 | 184  | 2.3108        | -                        | -                 | -               |
| 0.1821 | 185  | 2.1242        | -                        | -                 | -               |
| 0.1831 | 186  | 1.9822        | -                        | -                 | -               |
| 0.1841 | 187  | 2.3605        | -                        | -                 | -               |
| 0.1850 | 188  | 1.5251        | -                        | -                 | -               |
| 0.1860 | 189  | 1.2351        | -                        | -                 | -               |
| 0.1870 | 190  | 1.5859        | -                        | -                 | -               |
| 0.1880 | 191  | 1.8056        | -                        | -                 | -               |
| 0.1890 | 192  | 1.349         | -                        | -                 | -               |
| 0.1900 | 193  | 0.893         | -                        | -                 | -               |
| 0.1909 | 194  | 1.5122        | -                        | -                 | -               |
| 0.1919 | 195  | 1.3875        | -                        | -                 | -               |
| 0.1929 | 196  | 1.29          | -                        | -                 | -               |
| 0.1939 | 197  | 2.2931        | -                        | -                 | -               |
| 0.1949 | 198  | 1.2663        | -                        | -                 | -               |
| 0.1959 | 199  | 1.9712        | -                        | -                 | -               |
| 0.1969 | 200  | 2.3307        | -                        | -                 | -               |
| 0.1978 | 201  | 1.6544        | -                        | -                 | -               |
| 0.1988 | 202  | 1.638         | -                        | -                 | -               |
| 0.1998 | 203  | 1.3412        | -                        | -                 | -               |
| 0.2008 | 204  | 1.4454        | -                        | -                 | -               |
| 0.2018 | 205  | 1.5437        | -                        | -                 | -               |
| 0.2028 | 206  | 1.4921        | -                        | -                 | -               |
| 0.2037 | 207  | 1.4298        | -                        | -                 | -               |
| 0.2047 | 208  | 1.6174        | -                        | -                 | -               |
| 0.2057 | 209  | 1.4137        | -                        | -                 | -               |
| 0.2067 | 210  | 1.5652        | -                        | -                 | -               |
| 0.2077 | 211  | 1.1631        | -                        | -                 | -               |
| 0.2087 | 212  | 1.2351        | -                        | -                 | -               |
| 0.2096 | 213  | 1.7537        | -                        | -                 | -               |
| 0.2106 | 214  | 1.3186        | -                        | -                 | -               |
| 0.2116 | 215  | 1.2258        | -                        | -                 | -               |
| 0.2126 | 216  | 0.7695        | -                        | -                 | -               |
| 0.2136 | 217  | 1.2775        | -                        | -                 | -               |
| 0.2146 | 218  | 1.6795        | -                        | -                 | -               |
| 0.2156 | 219  | 1.2862        | -                        | -                 | -               |
| 0.2165 | 220  | 1.1723        | -                        | -                 | -               |
| 0.2175 | 221  | 1.3322        | -                        | -                 | -               |
| 0.2185 | 222  | 1.7564        | -                        | -                 | -               |
| 0.2195 | 223  | 1.1071        | -                        | -                 | -               |
| 0.2205 | 224  | 1.2011        | -                        | -                 | -               |
| 0.2215 | 225  | 1.2303        | -                        | -                 | -               |
| 0.2224 | 226  | 1.212         | -                        | -                 | -               |
| 0.2234 | 227  | 1.0117        | -                        | -                 | -               |
| 0.2244 | 228  | 1.1907        | -                        | -                 | -               |
| 0.2254 | 229  | 2.1293        | -                        | -                 | -               |
| 0.2264 | 230  | 1.3063        | -                        | -                 | -               |
| 0.2274 | 231  | 1.2841        | -                        | -                 | -               |
| 0.2283 | 232  | 1.3778        | -                        | -                 | -               |
| 0.2293 | 233  | 1.2242        | -                        | -                 | -               |
| 0.2303 | 234  | 0.9227        | -                        | -                 | -               |
| 0.2313 | 235  | 1.2221        | -                        | -                 | -               |
| 0.2323 | 236  | 2.1041        | -                        | -                 | -               |
| 0.2333 | 237  | 1.3341        | -                        | -                 | -               |
| 0.2343 | 238  | 1.0876        | -                        | -                 | -               |
| 0.2352 | 239  | 1.3328        | -                        | -                 | -               |
| 0.2362 | 240  | 1.2958        | -                        | -                 | -               |
| 0.2372 | 241  | 1.1522        | -                        | -                 | -               |
| 0.2382 | 242  | 1.7942        | -                        | -                 | -               |
| 0.2392 | 243  | 1.1325        | -                        | -                 | -               |
| 0.2402 | 244  | 1.6466        | -                        | -                 | -               |
| 0.2411 | 245  | 1.4608        | -                        | -                 | -               |
| 0.2421 | 246  | 0.6375        | -                        | -                 | -               |
| 0.2431 | 247  | 2.0177        | -                        | -                 | -               |
| 0.2441 | 248  | 1.2069        | -                        | -                 | -               |
| 0.2451 | 249  | 0.7639        | -                        | -                 | -               |
| 0.2461 | 250  | 1.3465        | -                        | -                 | -               |
| 0.2470 | 251  | 1.064         | -                        | -                 | -               |
| 0.2480 | 252  | 1.3757        | -                        | -                 | -               |
| 0.2490 | 253  | 1.612         | -                        | -                 | -               |
| 0.25   | 254  | 0.7917        | -                        | -                 | -               |
| 0.2510 | 255  | 1.5515        | -                        | -                 | -               |
| 0.2520 | 256  | 0.799         | -                        | -                 | -               |
| 0.2530 | 257  | 0.9882        | -                        | -                 | -               |
| 0.2539 | 258  | 1.1814        | -                        | -                 | -               |
| 0.2549 | 259  | 0.6394        | -                        | -                 | -               |
| 0.2559 | 260  | 1.4756        | -                        | -                 | -               |
| 0.2569 | 261  | 0.5338        | -                        | -                 | -               |
| 0.2579 | 262  | 0.9779        | -                        | -                 | -               |
| 0.2589 | 263  | 1.5307        | -                        | -                 | -               |
| 0.2598 | 264  | 1.1213        | -                        | -                 | -               |
| 0.2608 | 265  | 0.9482        | -                        | -                 | -               |
| 0.2618 | 266  | 0.9599        | -                        | -                 | -               |
| 0.2628 | 267  | 1.4455        | -                        | -                 | -               |
| 0.2638 | 268  | 1.6496        | -                        | -                 | -               |
| 0.2648 | 269  | 0.7402        | -                        | -                 | -               |
| 0.2657 | 270  | 0.7835        | -                        | -                 | -               |
| 0.2667 | 271  | 0.7821        | -                        | -                 | -               |
| 0.2677 | 272  | 1.5422        | -                        | -                 | -               |
| 0.2687 | 273  | 1.0995        | -                        | -                 | -               |
| 0.2697 | 274  | 1.378         | -                        | -                 | -               |
| 0.2707 | 275  | 1.3562        | -                        | -                 | -               |
| 0.2717 | 276  | 0.7376        | -                        | -                 | -               |
| 0.2726 | 277  | 1.1678        | -                        | -                 | -               |
| 0.2736 | 278  | 1.2989        | -                        | -                 | -               |
| 0.2746 | 279  | 1.9559        | -                        | -                 | -               |
| 0.2756 | 280  | 1.1237        | -                        | -                 | -               |
| 0.2766 | 281  | 0.952         | -                        | -                 | -               |
| 0.2776 | 282  | 1.6629        | -                        | -                 | -               |
| 0.2785 | 283  | 1.871         | -                        | -                 | -               |
| 0.2795 | 284  | 1.5946        | -                        | -                 | -               |
| 0.2805 | 285  | 1.4456        | -                        | -                 | -               |
| 0.2815 | 286  | 1.4085        | -                        | -                 | -               |
| 0.2825 | 287  | 1.1394        | -                        | -                 | -               |
| 0.2835 | 288  | 1.0315        | -                        | -                 | -               |
| 0.2844 | 289  | 1.488         | -                        | -                 | -               |
| 0.2854 | 290  | 1.4006        | -                        | -                 | -               |
| 0.2864 | 291  | 0.9237        | -                        | -                 | -               |
| 0.2874 | 292  | 1.163         | -                        | -                 | -               |
| 0.2884 | 293  | 1.7037        | -                        | -                 | -               |
| 0.2894 | 294  | 0.8715        | -                        | -                 | -               |
| 0.2904 | 295  | 1.2101        | -                        | -                 | -               |
| 0.2913 | 296  | 1.1179        | -                        | -                 | -               |
| 0.2923 | 297  | 1.3986        | -                        | -                 | -               |
| 0.2933 | 298  | 1.7068        | -                        | -                 | -               |
| 0.2943 | 299  | 0.8695        | -                        | -                 | -               |
| 0.2953 | 300  | 1.3778        | -                        | -                 | -               |
| 0.2963 | 301  | 1.2834        | -                        | -                 | -               |
| 0.2972 | 302  | 0.8123        | -                        | -                 | -               |
| 0.2982 | 303  | 1.6521        | -                        | -                 | -               |
| 0.2992 | 304  | 1.1064        | -                        | -                 | -               |
| 0.3002 | 305  | 0.9578        | -                        | -                 | -               |

</details>

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.2
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### GISTEmbedLoss
```bibtex
@misc{solatorio2024gistembed,
    title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
    author={Aivin V. Solatorio},
    year={2024},
    eprint={2402.16829},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->