bluesky333 commited on
Commit
92a36f5
·
verified ·
1 Parent(s): b0088e5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -3
README.md CHANGED
@@ -1,3 +1,68 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+ # SLaVA-CXR: Small Language and Vision Assistant for Chest X-ray Report Automation
5
+
6
+ **SLaVA-CXR: Small Language and Vision Assistant for Chest X-ray Report Automation** [[Paper](https://arxiv.org/abs/2409.13321)] <br>
7
+
8
+ ## Contents
9
+ - [Install](#install)
10
+ - [LLaVA-Phi Weights](#llava-weights)
11
+ - [Train](#train)
12
+ - [Evaluation](#evaluation)
13
+
14
+ ## Environment
15
+
16
+ ```Shell
17
+ conda create -n slava_cxr python=3.10 -y
18
+ conda activate slava_cxr
19
+ pip install --upgrade pip # enable PEP 660 support
20
+ pip install -e .
21
+ ```
22
+
23
+ ## MODEL
24
+ The SLaVA-CXR model can be downloaded in [HuggingFace](https://drive.google.com/file/d/1c0BXEuDy8Cmm2jfN0YYGkQxFZd2ZIoLg/view).
25
+
26
+ ## Train
27
+ The training codes is made available. The training datasets are currently not available.
28
+
29
+ ## Evaluation
30
+ Evaluation dataset can be any chest X-ray frontal view image paired with a report.
31
+ We used MIMIC-CXR and IU-Xray datasets in our paper for the evaluation.
32
+ We have included IU-Xray questions for impression and findings section automation.
33
+ Please download IU-Xray dataset [LINK](https://drive.google.com/file/d/1c0BXEuDy8Cmm2jfN0YYGkQxFZd2ZIoLg/view).
34
+
35
+ ### Findings Generation
36
+ ```Shell
37
+ CUDA_VISIBLE_DEVICES=0 python -m llava_phi.eval.model_vqa_slava_cxr \
38
+ --model-path ./SLaVA-CXR \
39
+ --question-file iuxray_sample_findings.jsonl \
40
+ --image-folder path_to_iuxray_images \
41
+ --answers-file findings_result.jsonl \
42
+ --conv-mode default \
43
+ --max_new_tokens 512
44
+ ```
45
+ ### Impression Summarization
46
+ ```Shell
47
+ CUDA_VISIBLE_DEVICES=0 python -m llava_phi.eval.model_vqa_slava_cxr \
48
+ --model-path ./SLaVA-CXR \
49
+ --question-file iuxray_sample_impression.jsonl \
50
+ --image-folder path_to_iuxray_images \
51
+ --answers-file impression_result.jsonl \
52
+ --conv-mode default \
53
+ --max_new_tokens 256
54
+ ```
55
+ ## Citation
56
+ ```bibtex
57
+
58
+ @article{wu2024slava,
59
+ title={SLaVA-CXR: Small Language and Vision Assistant for Chest X-ray Report Automation},
60
+ author={Wu, Jinge and Kim, Yunsoo and Shi, Daqian and Cliffton, David and Liu, Fenglin and Wu, Honghan},
61
+ journal={arXiv preprint arXiv:2409.13321},
62
+ year={2024}
63
+ }
64
+ ```
65
+
66
+ ## Acknowledgement
67
+ We used the LLaVA-Phi codes to train our model
68
+ - [LLaVA-Phi](https://github.com/zhuyiche/llava-phi)