mkulkarni24 commited on
Commit
7423e6d
·
1 Parent(s): 7eaf138

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -4
README.md CHANGED
@@ -1,4 +1,93 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
4
- Please direct all questions to [email protected]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ ---
4
+ # Keyphrase Boundary Infilling with Replacement (KBIR)
5
+ The KBIR model as described in Learning Rich Representations of Keyphrases from Text (https://arxiv.org/pdf/2112.08547.pdf) builds on top of the RoBERTa architecture by adding an Infilling head and a Replacement Classification head that is used during pre-training. However, these heads are not used during the downstream evaluation of the model and we only leverage the pre-trained embeddings. Discarding the heads thereby allows us to be compatible with all AutoModel classes that RoBERTa supports.
6
+
7
+ We provide examples on how to perform downstream evaluation on some of the tasks reported in the paper.
8
+ ## Downstream Evaluation
9
+
10
+ ### Keyphrase Extraction
11
+ ```
12
+ from transformers import AutoTokenizer, AutoModelForTokenClassification
13
+
14
+ tokenizer = AutoTokenizer.from_pretrained("bloomberg/KBIR")
15
+ model = AutoModelForTokenClassification.from_pretrained("bloomberg/KBIR")
16
+
17
+ from datasets import load_dataset
18
+
19
+ dataset = load_dataset("midas/semeval2017_ke_tagged")
20
+ ```
21
+
22
+ Reported Results:
23
+
24
+ | Model | Inspec | SE10 | SE17 |
25
+ |-----------------------|--------|-------|-------|
26
+ | RoBERTa+BiLSTM-CRF | 59.5 | 27.8 | 50.8 |
27
+ | RoBERTa+TG-CRF | 60.4 | 29.7 | 52.1 |
28
+ | SciBERT+Hypernet-CRF | 62.1 | 36.7 | 54.4 |
29
+ | RoBERTa+Hypernet-CRF | 62.3 | 34.8 | 53.3 |
30
+ | RoBERTa-extended-CRF* | 62.09 | 40.61 | 52.32 |
31
+ | KBI-CRF* | 62.61 | 40.81 | 59.7 |
32
+ | KBIR-CRF* | 62.72 | 40.15 | 62.56 |
33
+
34
+ ### Named Entity Recognition
35
+ ```
36
+ from transformers import AutoTokenizer, AutoModelForTokenClassification
37
+
38
+ tokenizer = AutoTokenizer.from_pretrained("bloomberg/KBIR")
39
+ model = AutoModelForTokenClassification.from_pretrained("bloomberg/KBIR")
40
+
41
+ from datasets import load_dataset
42
+
43
+ dataset = load_dataset("conll2003")
44
+ ```
45
+
46
+ Reported Results:
47
+
48
+ | Model | F1 |
49
+ |---------------------------------|-------|
50
+ | LSTM-CRF (Lample et al., 2016) | 91.0 |
51
+ | ELMo (Peters et al., 2018) | 92.2 |
52
+ | BERT (Devlin et al., 2018) | 92.8 |
53
+ | (Akbik et al., 2019) | 93.1 |
54
+ | (Baevski et al., 2019) | 93.5 |
55
+ | LUKE (Yamada et al., 2020) | 94.3 |
56
+ | LUKE w/o entity attention | 94.1 |
57
+ | RoBERTa (Yamada et al., 2020) | 92.4 |
58
+ | RoBERTa-extended* | 92.54 |
59
+ | KBI* | 92.73 |
60
+ | KBIR* | 92.97 |
61
+
62
+ ### Question Answering
63
+ ```
64
+ from transformers import AutoTokenizer, AutoModelForQuestionAnswering
65
+
66
+ tokenizer = AutoTokenizer.from_pretrained("bloomberg/KBIR")
67
+ model = AutoModelForQuestionAnswering.from_pretrained("bloomberg/KBIR")
68
+
69
+ from datasets import load_dataset
70
+
71
+ dataset = load_dataset("squad")
72
+ ```
73
+ Reported Results:
74
+
75
+ | Model | EM | F1 |
76
+ |------------------------|-------|-------|
77
+ | BERT | 84.2 | 91.1 |
78
+ | XLNet | 89.0 | 94.5 |
79
+ | ALBERT | 89.3 | 94.8 |
80
+ | LUKE | 89.8 | 95.0 |
81
+ | LUKE w/o entity attention | 89.2 | 94.7 |
82
+ | RoBERTa | 88.9 | 94.6 |
83
+ | RoBERTa-extended* | 88.88 | 94.55 |
84
+ | KBI* | 88.97 | 94.7 |
85
+ | KBIR* | 89.04 | 94.75 |
86
+
87
+ ## Any other classification task
88
+ As mentioned above since KBIR is built on top of the RoBERTa architecture, it is compatible with any AutoModel setting that RoBERTa is also compatible with.
89
+
90
+ We encourage you to try fine-tuning KBIR on different datasets and report the downstream results.
91
+
92
+ ## Contact
93
+ For any questions contact [email protected]