blockblockblock
commited on
Upload folder using huggingface_hub
Browse files- README.md +6 -0
- added_tokens.json +4 -0
- config.json +52 -0
- configuration_quiet.py +172 -0
- generation_config.json +6 -0
- inference.py +36 -0
- model.safetensors.index.json +305 -0
- modeling_quiet.py +0 -0
- output.safetensors +3 -0
- special_tokens_map.json +40 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +61 -0
- train.py +144 -0
README.md
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- open-web-math/open-web-math
|
4 |
+
---
|
5 |
+
|
6 |
+
Mistral-7b with continued pretraining using Quiet-STaR (https://arxiv.org/abs/2403.09629) for generating 8 thought tokens before each output token.
|
added_tokens.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|endthought|>": 32000,
|
3 |
+
"<|startthought|>": 32001
|
4 |
+
}
|
config.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Crystalcareai/Quiet-Star-Custom",
|
3 |
+
"architectures": [
|
4 |
+
"QuietForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_quiet.QuietConfig",
|
9 |
+
"AutoModel": "modeling_quiet.QuietModel",
|
10 |
+
"AutoModelForCausalLM": "modeling_quiet.QuietForCausalLM"
|
11 |
+
},
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"eos_token_id": 2,
|
14 |
+
"hidden_act": "silu",
|
15 |
+
"hidden_size": 4096,
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": 14336,
|
18 |
+
"max_position_embeddings": 32768,
|
19 |
+
"max_thoughts": 10,
|
20 |
+
"merged_lm_and_talk_heads": false,
|
21 |
+
"merged_lm_and_think_heads": true,
|
22 |
+
"merged_talk_heads": true,
|
23 |
+
"model_type": "quiet",
|
24 |
+
"num_attention_heads": 32,
|
25 |
+
"num_hidden_layers": 32,
|
26 |
+
"num_key_value_heads": 8,
|
27 |
+
"rms_norm_eps": 1e-05,
|
28 |
+
"rope_theta": 10000.0,
|
29 |
+
"sliding_window": 4096,
|
30 |
+
"tie_word_embeddings": false,
|
31 |
+
"torch_dtype": "bfloat16",
|
32 |
+
"transformers_version": "4.37.0.dev0",
|
33 |
+
"use_cache": true,
|
34 |
+
"use_complex_talk_head": true,
|
35 |
+
"use_complex_think_head": false,
|
36 |
+
"use_concat_talk_head": true,
|
37 |
+
"use_shallow_talk": false,
|
38 |
+
"use_shallow_think": true,
|
39 |
+
"use_weighted_talk_head": true,
|
40 |
+
"vocab_size": 32002,
|
41 |
+
"quantization_config": {
|
42 |
+
"quant_method": "exl2",
|
43 |
+
"version": "0.0.15",
|
44 |
+
"bits": 6.0,
|
45 |
+
"head_bits": 6,
|
46 |
+
"calibration": {
|
47 |
+
"rows": 100,
|
48 |
+
"length": 2048,
|
49 |
+
"dataset": "(default)"
|
50 |
+
}
|
51 |
+
}
|
52 |
+
}
|
configuration_quiet.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Quiet AI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Quiet model configuration"""
|
16 |
+
|
17 |
+
from transformers.configuration_utils import PretrainedConfig
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
QUIET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
24 |
+
"quietai/Quiet-7B-v0.1": "https://huggingface.co/quietai/Quiet-7B-v0.1/resolve/main/config.json",
|
25 |
+
"quietai/Quiet-7B-Instruct-v0.1": "https://huggingface.co/quietai/Quiet-7B-Instruct-v0.1/resolve/main/config.json",
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
class QuietConfig(PretrainedConfig):
|
30 |
+
r"""
|
31 |
+
This is the configuration class to store the configuration of a [`QuietModel`]. It is used to instantiate an
|
32 |
+
Quiet model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
33 |
+
with the defaults will yield a similar configuration to that of the Quiet-7B-v0.1 or Quiet-7B-Instruct-v0.1.
|
34 |
+
|
35 |
+
[quietai/Quiet-7B-v0.1](https://huggingface.co/quietai/Quiet-7B-v0.1)
|
36 |
+
[quietai/Quiet-7B-Instruct-v0.1](https://huggingface.co/quietai/Quiet-7B-Instruct-v0.1)
|
37 |
+
|
38 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
39 |
+
documentation from [`PretrainedConfig`] for more information.
|
40 |
+
|
41 |
+
|
42 |
+
Args:
|
43 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
44 |
+
Vocabulary size of the Quiet model. Defines the number of different tokens that can be represented by the
|
45 |
+
`inputs_ids` passed when calling [`QuietModel`]
|
46 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
47 |
+
Dimension of the hidden representations.
|
48 |
+
intermediate_size (`int`, *optional*, defaults to 14336):
|
49 |
+
Dimension of the MLP representations.
|
50 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
51 |
+
Number of hidden layers in the Transformer encoder.
|
52 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
53 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
54 |
+
num_key_value_heads (`int`, *optional*, defaults to 8):
|
55 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
56 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
57 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
58 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
59 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
60 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
|
61 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
62 |
+
The non-linear activation function (function or string) in the decoder.
|
63 |
+
max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
|
64 |
+
The maximum sequence length that this model might ever be used with. Quiet's sliding window attention
|
65 |
+
allows sequence of up to 4096*32 tokens.
|
66 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
67 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
68 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
69 |
+
The epsilon used by the rms normalization layers.
|
70 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
71 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
72 |
+
relevant if `config.is_decoder=True`.
|
73 |
+
pad_token_id (`int`, *optional*):
|
74 |
+
The id of the padding token.
|
75 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
76 |
+
The id of the "beginning-of-sequence" token.
|
77 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
78 |
+
The id of the "end-of-sequence" token.
|
79 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
80 |
+
Whether the model's input and output word embeddings should be tied.
|
81 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
82 |
+
The base period of the RoPE embeddings.
|
83 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
84 |
+
Sliding window attention window size. If not specified, will default to `4096`.
|
85 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
86 |
+
The dropout ratio for the attention probabilities.
|
87 |
+
|
88 |
+
```python
|
89 |
+
>>> from transformers import QuietModel, QuietConfig
|
90 |
+
|
91 |
+
>>> # Initializing a Quiet 7B style configuration
|
92 |
+
>>> configuration = QuietConfig()
|
93 |
+
|
94 |
+
>>> # Initializing a model from the Quiet 7B style configuration
|
95 |
+
>>> model = QuietModel(configuration)
|
96 |
+
|
97 |
+
>>> # Accessing the model configuration
|
98 |
+
>>> configuration = model.config
|
99 |
+
```"""
|
100 |
+
|
101 |
+
model_type = "quiet"
|
102 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
103 |
+
|
104 |
+
def __init__(
|
105 |
+
self,
|
106 |
+
vocab_size=32000,
|
107 |
+
hidden_size=4096,
|
108 |
+
intermediate_size=14336,
|
109 |
+
num_hidden_layers=32,
|
110 |
+
num_attention_heads=32,
|
111 |
+
num_key_value_heads=8,
|
112 |
+
hidden_act="silu",
|
113 |
+
max_position_embeddings=4096 * 32,
|
114 |
+
initializer_range=0.02,
|
115 |
+
rms_norm_eps=1e-6,
|
116 |
+
use_cache=True,
|
117 |
+
pad_token_id=None,
|
118 |
+
bos_token_id=1,
|
119 |
+
eos_token_id=2,
|
120 |
+
tie_word_embeddings=False,
|
121 |
+
rope_theta=10000.0,
|
122 |
+
sliding_window=4096,
|
123 |
+
attention_dropout=0.0,
|
124 |
+
max_thoughts=16,
|
125 |
+
merged_talk_heads=True,
|
126 |
+
merged_lm_and_talk_heads=False,
|
127 |
+
merged_lm_and_think_heads=True,
|
128 |
+
use_concat_talk_head=True,
|
129 |
+
use_shallow_think=True,
|
130 |
+
use_shallow_talk=False,
|
131 |
+
use_complex_think_head=False,
|
132 |
+
use_complex_talk_head=True,
|
133 |
+
use_weighted_talk_head=True,
|
134 |
+
**kwargs,
|
135 |
+
):
|
136 |
+
self.vocab_size = vocab_size
|
137 |
+
self.max_position_embeddings = max_position_embeddings
|
138 |
+
self.hidden_size = hidden_size
|
139 |
+
self.intermediate_size = intermediate_size
|
140 |
+
self.num_hidden_layers = num_hidden_layers
|
141 |
+
self.num_attention_heads = num_attention_heads
|
142 |
+
self.sliding_window = sliding_window
|
143 |
+
|
144 |
+
# for backward compatibility
|
145 |
+
if num_key_value_heads is None:
|
146 |
+
num_key_value_heads = num_attention_heads
|
147 |
+
|
148 |
+
self.num_key_value_heads = num_key_value_heads
|
149 |
+
self.hidden_act = hidden_act
|
150 |
+
self.initializer_range = initializer_range
|
151 |
+
self.rms_norm_eps = rms_norm_eps
|
152 |
+
self.use_cache = use_cache
|
153 |
+
self.rope_theta = rope_theta
|
154 |
+
self.attention_dropout = attention_dropout
|
155 |
+
self.max_thoughts = max_thoughts
|
156 |
+
self.merged_talk_heads = merged_talk_heads
|
157 |
+
self.merged_lm_and_talk_heads = merged_lm_and_talk_heads
|
158 |
+
self.merged_lm_and_think_heads = merged_lm_and_think_heads
|
159 |
+
self.use_concat_talk_head = use_concat_talk_head
|
160 |
+
self.use_shallow_think = use_shallow_think
|
161 |
+
self.use_shallow_talk = use_shallow_talk
|
162 |
+
self.use_complex_think_head = use_complex_think_head
|
163 |
+
self.use_complex_talk_head = use_complex_talk_head
|
164 |
+
self.use_weighted_talk_head = use_weighted_talk_head
|
165 |
+
|
166 |
+
super().__init__(
|
167 |
+
pad_token_id=pad_token_id,
|
168 |
+
bos_token_id=bos_token_id,
|
169 |
+
eos_token_id=eos_token_id,
|
170 |
+
tie_word_embeddings=tie_word_embeddings,
|
171 |
+
**kwargs,
|
172 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.37.0.dev0"
|
6 |
+
}
|
inference.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, TextStreamer, AutoModelForCausalLM
|
3 |
+
|
4 |
+
model_path = "Crystalcareai/GemMoE-Medium-v0.4"
|
5 |
+
|
6 |
+
# Load model
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(
|
8 |
+
model_path,
|
9 |
+
device_map="auto",
|
10 |
+
low_cpu_mem_usage=True,
|
11 |
+
torch_dtype=torch.float16,
|
12 |
+
attn_implementation="flash_attention_2"
|
13 |
+
trust_remote_code=True,
|
14 |
+
)
|
15 |
+
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
17 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
18 |
+
|
19 |
+
# Convert prompt to tokens
|
20 |
+
prompt_template = "[INST] {prompt} [/INST]"
|
21 |
+
|
22 |
+
prompt = "You're standing on the surface of the Earth. "\
|
23 |
+
"You walk one mile south, one mile west and one mile north. "\
|
24 |
+
"You end up exactly where you started. Where are you?"
|
25 |
+
|
26 |
+
tokens = tokenizer(
|
27 |
+
prompt_template.format(prompt=prompt),
|
28 |
+
return_tensors='pt'
|
29 |
+
).input_ids.cuda()
|
30 |
+
|
31 |
+
# Generate output
|
32 |
+
generation_output = model.generate(
|
33 |
+
tokens,
|
34 |
+
streamer=streamer,
|
35 |
+
max_new_tokens=512
|
36 |
+
)
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 14584217600
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"end_embedding": "model-00001-of-00003.safetensors",
|
7 |
+
"lm_head.weight": "model-00003-of-00003.safetensors",
|
8 |
+
"model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
9 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
10 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
11 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
12 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
13 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
17 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
18 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
19 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
20 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
21 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
22 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
23 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
24 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
25 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
26 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
27 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
28 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
29 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
30 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
31 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
32 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
33 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
34 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
35 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
36 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
37 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
38 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
39 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
40 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
41 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
42 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
43 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
44 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
45 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
46 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
47 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
48 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
49 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
50 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
51 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
52 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
53 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
54 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
55 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
56 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
57 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
58 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
59 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
60 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
61 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
62 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
63 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
64 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
65 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
66 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
67 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
68 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
69 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
70 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
71 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
72 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
73 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
74 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
75 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
76 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
77 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
78 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
79 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
80 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
81 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
82 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
83 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
84 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
85 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
86 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
87 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
88 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
89 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
90 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
91 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
92 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
93 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
94 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
95 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
96 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
97 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
98 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
99 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
100 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
101 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
102 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
103 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
104 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
105 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
106 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
107 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
108 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
109 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
110 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
111 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
112 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
113 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
114 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
115 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
116 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
117 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
118 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
119 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
120 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
121 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
122 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
123 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
124 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
125 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
126 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
127 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
128 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
129 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
130 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
131 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
132 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
133 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
134 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
135 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
136 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
137 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
138 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
139 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
140 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
141 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
142 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
143 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
144 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
145 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
146 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
147 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
148 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
149 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
150 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
151 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
152 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
153 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
154 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
155 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
156 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
157 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
158 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
159 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
160 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
161 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
162 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
163 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
164 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
165 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
166 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
167 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
168 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
169 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
170 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
171 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
172 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
173 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
174 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
175 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
176 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
177 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
178 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
179 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
180 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
181 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
182 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
183 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
184 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
185 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
186 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
187 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
188 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
189 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
190 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
191 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
192 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
193 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
194 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
195 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
196 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
197 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
198 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
199 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
200 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
201 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
202 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
203 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
204 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
205 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
206 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
207 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
208 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
209 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
210 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
211 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
212 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
213 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
214 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
215 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
216 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
217 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
218 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
219 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
220 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
221 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
222 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
223 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
224 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
225 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
226 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
227 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
228 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
229 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
230 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
231 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
232 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
233 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
234 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
235 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
236 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
237 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
238 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
239 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
240 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
241 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
242 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
243 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
244 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
245 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
246 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
247 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
248 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
249 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
250 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
251 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
252 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
253 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
254 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
255 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
256 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
257 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
258 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
259 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
260 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
261 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
262 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
263 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
264 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
265 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
266 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
267 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
268 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
269 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
270 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
271 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
272 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
273 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
274 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
275 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
276 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
277 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
278 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
279 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
280 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
281 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
282 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
283 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
284 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
285 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
286 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
287 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
288 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
289 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
290 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
291 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
292 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
293 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
294 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
295 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
296 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
297 |
+
"model.norm.weight": "model-00003-of-00003.safetensors",
|
298 |
+
"start_embedding": "model-00001-of-00003.safetensors",
|
299 |
+
"talk_head.0.0.bias": "model-00003-of-00003.safetensors",
|
300 |
+
"talk_head.0.0.weight": "model-00003-of-00003.safetensors",
|
301 |
+
"talk_head.0.2.bias": "model-00003-of-00003.safetensors",
|
302 |
+
"talk_head.0.2.weight": "model-00003-of-00003.safetensors",
|
303 |
+
"talk_head.0.4.weight": "model-00003-of-00003.safetensors"
|
304 |
+
}
|
305 |
+
}
|
modeling_quiet.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
output.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4272360cf218b4ccfe634435a9d6704a1880528953fa102c31c8c801e532a75
|
3 |
+
size 5601076392
|
special_tokens_map.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
{
|
4 |
+
"content": "<|endthought|>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"content": "<|startthought|>",
|
12 |
+
"lstrip": false,
|
13 |
+
"normalized": false,
|
14 |
+
"rstrip": false,
|
15 |
+
"single_word": false
|
16 |
+
}
|
17 |
+
],
|
18 |
+
"bos_token": {
|
19 |
+
"content": "<s>",
|
20 |
+
"lstrip": false,
|
21 |
+
"normalized": false,
|
22 |
+
"rstrip": false,
|
23 |
+
"single_word": false
|
24 |
+
},
|
25 |
+
"eos_token": {
|
26 |
+
"content": "</s>",
|
27 |
+
"lstrip": false,
|
28 |
+
"normalized": false,
|
29 |
+
"rstrip": false,
|
30 |
+
"single_word": false
|
31 |
+
},
|
32 |
+
"pad_token": "</s>",
|
33 |
+
"unk_token": {
|
34 |
+
"content": "<unk>",
|
35 |
+
"lstrip": false,
|
36 |
+
"normalized": false,
|
37 |
+
"rstrip": false,
|
38 |
+
"single_word": false
|
39 |
+
}
|
40 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
tokenizer_config.json
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"32000": {
|
30 |
+
"content": "<|endthought|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"32001": {
|
38 |
+
"content": "<|startthought|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
}
|
45 |
+
},
|
46 |
+
"additional_special_tokens": [
|
47 |
+
"<|endthought|>",
|
48 |
+
"<|startthought|>"
|
49 |
+
],
|
50 |
+
"bos_token": "<s>",
|
51 |
+
"clean_up_tokenization_spaces": false,
|
52 |
+
"eos_token": "</s>",
|
53 |
+
"legacy": true,
|
54 |
+
"model_max_length": 1000000000000000019884624838656,
|
55 |
+
"pad_token": "</s>",
|
56 |
+
"sp_model_kwargs": {},
|
57 |
+
"spaces_between_special_tokens": false,
|
58 |
+
"tokenizer_class": "LlamaTokenizer",
|
59 |
+
"unk_token": "<unk>",
|
60 |
+
"use_default_system_prompt": false
|
61 |
+
}
|
train.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
3 |
+
import random
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
from datasets import load_dataset
|
6 |
+
from transformers import TrainingArguments
|
7 |
+
from trl import SFTTrainer
|
8 |
+
from peft import LoraConfig
|
9 |
+
|
10 |
+
import time
|
11 |
+
random_seed = 42
|
12 |
+
torch.manual_seed(random_seed)
|
13 |
+
random.seed(random_seed)
|
14 |
+
|
15 |
+
dataset = load_dataset("HuggingFaceH4/deita-10k-v0-sft", split="train_sft")
|
16 |
+
|
17 |
+
n_ahead_talk_global = 2
|
18 |
+
n_passes_global = 2
|
19 |
+
n_ahead_global = 2
|
20 |
+
n_examples = 0
|
21 |
+
full_batch_size = 2
|
22 |
+
eval_and_logging_steps = 2
|
23 |
+
save_steps = 100
|
24 |
+
|
25 |
+
|
26 |
+
def model_init(params):
|
27 |
+
original = False
|
28 |
+
if params is None:
|
29 |
+
params = {}
|
30 |
+
else:
|
31 |
+
params = params.params
|
32 |
+
# save params to file
|
33 |
+
n_ahead = params.get("n_ahead", n_ahead_global if not original else 1)
|
34 |
+
n_ahead_talk = params.get("n_ahead_talk", n_ahead_talk_global if not original else 1)
|
35 |
+
n_passes = params.get("n_passes", n_passes_global if not original else 1)
|
36 |
+
gumbel_temperature = params.get("gumbel_temperature", 1)
|
37 |
+
use_start_thought_token = params.get("use_start_thought_token", True)
|
38 |
+
use_end_thought_token = params.get("use_end_thought_token", True)
|
39 |
+
include_policy_loss = params.get("include_policy_loss", True)
|
40 |
+
gumbel_detach = params.get("gumbel_detach", True)
|
41 |
+
merged_talk_heads = params.get("merged_talk_heads", True)
|
42 |
+
gradient_accumulation_steps = params.get("gradient_accumulation_steps", global_gradient_accumulation_steps)
|
43 |
+
residual_think_head = params.get("residual_think_head", False)
|
44 |
+
optimize_lm_head_only_at_start = params.get("optimize_lm_head_only_at_start", False)
|
45 |
+
|
46 |
+
model_id = "Crystalcareai/Quiet-Star-Custom"
|
47 |
+
tokenizer_id = model_id
|
48 |
+
print("Loading model")
|
49 |
+
model = AutoModelForCausalLM.from_pretrained(
|
50 |
+
model_id,
|
51 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
52 |
+
max_thoughts=n_ahead + n_ahead_talk + 1,
|
53 |
+
merged_talk_heads=merged_talk_heads,
|
54 |
+
merged_lm_and_talk_heads=False,
|
55 |
+
merged_lm_and_think_heads=True,
|
56 |
+
use_concat_talk_head=True,
|
57 |
+
use_shallow_think=True,
|
58 |
+
use_shallow_talk=False,
|
59 |
+
use_complex_think_head=False,
|
60 |
+
use_complex_talk_head=True,
|
61 |
+
use_weighted_talk_head=True,
|
62 |
+
trust_remote_code=True,
|
63 |
+
device_map="auto",
|
64 |
+
)
|
65 |
+
print("Loaded model")
|
66 |
+
|
67 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id,padding=False,truncation=True)
|
68 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
69 |
+
|
70 |
+
special_tokens_to_add = []
|
71 |
+
if model.use_start_thought_token:
|
72 |
+
special_tokens_to_add.append("<|startthought|>")
|
73 |
+
if model.use_end_thought_token:
|
74 |
+
special_tokens_to_add.append("<|endthought|>")
|
75 |
+
if special_tokens_to_add:
|
76 |
+
tokenizer.add_special_tokens({"additional_special_tokens": special_tokens_to_add})
|
77 |
+
model.resize_token_embeddings(len(tokenizer))
|
78 |
+
model.tokenizer = tokenizer
|
79 |
+
model.gumbel_detach = gumbel_detach
|
80 |
+
model.include_policy_loss = include_policy_loss
|
81 |
+
model.use_end_thought_token = use_end_thought_token
|
82 |
+
model.use_start_thought_token = use_start_thought_token
|
83 |
+
model.n_ahead = n_ahead
|
84 |
+
model.n_ahead_talk = n_ahead_talk
|
85 |
+
model.n_passes = n_passes
|
86 |
+
model.n_tokens_print = gradient_accumulation_steps
|
87 |
+
model.gradient_accumulation_steps = gradient_accumulation_steps
|
88 |
+
model.residual_think_head = residual_think_head
|
89 |
+
model.optimize_lm_head_only_at_start = optimize_lm_head_only_at_start
|
90 |
+
model.gumbel_temperature = gumbel_temperature
|
91 |
+
model.original_mode = original
|
92 |
+
model.config_params = params
|
93 |
+
model.run_start = int(time.time())
|
94 |
+
model.kill_after = 100
|
95 |
+
model.train()
|
96 |
+
return model
|
97 |
+
|
98 |
+
|
99 |
+
batch_size = full_batch_size // n_passes_global
|
100 |
+
global_gradient_accumulation_steps = full_batch_size // batch_size
|
101 |
+
run_id = int(time.time())
|
102 |
+
training_args = TrainingArguments(
|
103 |
+
output_dir="./out",
|
104 |
+
num_train_epochs=3,
|
105 |
+
per_device_train_batch_size=1,
|
106 |
+
gradient_checkpointing=False,
|
107 |
+
gradient_accumulation_steps=4,
|
108 |
+
optim="adamw_torch_fused",
|
109 |
+
logging_steps=1,
|
110 |
+
save_strategy="steps",
|
111 |
+
save_steps=300,
|
112 |
+
bf16=True,
|
113 |
+
tf32=False,
|
114 |
+
# auto_find_batch_size=True
|
115 |
+
learning_rate=2e-07,
|
116 |
+
max_grad_norm=1.0, # Gradient clipping with a maximum gradient norm of 0.3
|
117 |
+
warmup_steps=100,
|
118 |
+
lr_scheduler_type="cosine",
|
119 |
+
push_to_hub=False,
|
120 |
+
)
|
121 |
+
|
122 |
+
# peft_config = LoraConfig(
|
123 |
+
# r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
|
124 |
+
# target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
|
125 |
+
# "gate_proj", "up_proj", "down_proj",],
|
126 |
+
# lora_alpha = 16,
|
127 |
+
# lora_dropout = 0, # Supports any, but = 0 is optimized
|
128 |
+
# bias = "none", # Enable Dora method
|
129 |
+
# use_dora=True,
|
130 |
+
# )
|
131 |
+
|
132 |
+
torch.autograd.set_detect_anomaly(True)
|
133 |
+
model = model_init(None) # Initialize the model
|
134 |
+
tokenizer = model.tokenizer
|
135 |
+
|
136 |
+
trainer = SFTTrainer(
|
137 |
+
args=training_args,
|
138 |
+
train_dataset=dataset,
|
139 |
+
model=model,
|
140 |
+
# peft_config=peft_config,
|
141 |
+
tokenizer=tokenizer,
|
142 |
+
)
|
143 |
+
|
144 |
+
trainer.train()
|