File size: 1,470 Bytes
f7b9f31 3b64763 f7b9f31 34a04d5 f7b9f31 34a04d5 89b0997 34a04d5 f7b9f31 34a04d5 f7b9f31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
license: apache-2.0
tags:
- generated_from_trainer
base_model: distilbert-base-uncased
model-index:
- name: uzb-senAnalys
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# uzbek-sentiment-analysis
It achieves the following results on the evaluation set:
- eval_loss: 0.6374
- eval_accuracy: {'accuracy': 0.7862348178137651}
- eval_f1score: {'f1': 0.7880364308572618}
- eval_runtime: 7.593
- eval_samples_per_second: 162.65
- eval_steps_per_second: 20.414
- step: 0
## Model description
**uzbek-sentiment-analysis** modelidan foydalanish.
```
from transformers import pipeline
pipe = pipeline('sentimennt-analysis', model='ai-nightcoder/uzbek-sentiment-analysis-v5')
text = "bu ovqatni men juda ham yaxshi ko'raman."
pipe(text)[0]['label']
```
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 864
- num_epochs: 7
### Framework versions
- Transformers 4.40.1
- Pytorch 2.4.0.dev20240416+cu121
- Datasets 1.18.3
- Tokenizers 0.19.1
|