File size: 22,234 Bytes
b7e0988
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
# Lyrics Generation Model Development
# Author: [Your Name]
# Project: Opentunes.ai

import torch
import torch.nn as nn
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    Trainer,
    TrainingArguments,
    GPT2LMHeadModel,
    GPT2Tokenizer
)
import pandas as pd
import numpy as np
from pathlib import Path
import json
import wandb
from tqdm import tqdm

# 1. Data Loading and Preprocessing
class LyricsDataset(torch.utils.data.Dataset):
    """
    Custom Dataset for lyrics data.
    
    Features:
    - Loads and processes lyrics text
    - Handles style/genre tags
    - Manages rhyme patterns
    - Tokenization for transformer models
    """
    
    def __init__(self, data_dir, max_length=512):
        self.data_dir = Path(data_dir)
        self.max_length = max_length
        
        # Initialize tokenizer (using GPT-2 as base)
        self.tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
        self.tokenizer.pad_token = self.tokenizer.eos_token
        
        # Load lyrics data
        self.lyrics_files = list(self.data_dir.glob("*.txt"))
        self.lyrics_data = self._load_lyrics_data()
        
    def _load_lyrics_data(self):
        """Load and preprocess lyrics from files."""
        data = []
        for file in self.lyrics_files:
            with open(file, 'r', encoding='utf-8') as f:
                lyrics = f.read()
            
            # Extract metadata from filename or content
            metadata = self._extract_metadata(file)
            
            data.append({
                'lyrics': lyrics,
                'genre': metadata.get('genre', 'unknown'),
                'style': metadata.get('style', 'unknown'),
                'structure': metadata.get('structure', 'verse-chorus')
            })
        return data
    
    def _extract_metadata(self, file):
        """Extract metadata from filename or content."""
        # Example filename format: pop_love_verse-chorus.txt
        parts = file.stem.split('_')
        return {
            'genre': parts[0] if len(parts) > 0 else 'unknown',
            'style': parts[1] if len(parts) > 1 else 'unknown',
            'structure': parts[2] if len(parts) > 2 else 'verse-chorus'
        }
    
    def __len__(self):
        return len(self.lyrics_data)
    
    def __getitem__(self, idx):
        item = self.lyrics_data[idx]
        
        # Prepare input text with metadata
        input_text = f"<|genre|>{item['genre']}<|style|>{item['style']}<|lyrics|>{item['lyrics']}"
        
        # Tokenize
        encoding = self.tokenizer(
            input_text,
            max_length=self.max_length,
            padding='max_length',
            truncation=True,
            return_tensors='pt'
        )
        
        return {
            'input_ids': encoding['input_ids'].squeeze(),
            'attention_mask': encoding['attention_mask'].squeeze()
        }

# 2. Model Architecture
class LyricsTransformer(nn.Module):
    """
    Transformer model for lyrics generation.
    
    Features:
    - GPT-2 based architecture
    - Style conditioning
    - Rhyme awareness
    - Structure control
    """
    
    def __init__(self, 
                 vocab_size=50257,  # GPT-2 vocabulary size
                 d_model=768,
                 nhead=12,
                 num_layers=6):
        super().__init__()
        
        # Load pretrained GPT-2
        self.transformer = GPT2LMHeadModel.from_pretrained('gpt2')
        
        # Add style embedding
        self.style_embedding = nn.Embedding(100, d_model)  # 100 different styles
        
        # Add additional layers for style conditioning
        self.style_projection = nn.Linear(d_model, d_model)
        self.genre_embedding = nn.Embedding(50, d_model)  # 50 different genres
        
    def forward(self, input_ids, attention_mask=None, style_ids=None):
        """
        Forward pass with style conditioning.
        
        Args:
            input_ids: Tokenized input text
            attention_mask: Attention mask for padding
            style_ids: Optional style conditioning ids
        """
        # Get base transformer outputs
        outputs = self.transformer(
            input_ids=input_ids,
            attention_mask=attention_mask,
            return_dict=True
        )
        
        # Add style conditioning if provided
        if style_ids is not None:
            style_embeds = self.style_embedding(style_ids)
            style_projection = self.style_projection(style_embeds)
            outputs.logits += style_projection
        
        return outputs

# 3. Training Pipeline
class LyricsTrainer:
    """
    Training pipeline for lyrics generation model.
    
    Features:
    - Custom training loop
    - Style-conditional training
    - Rhyme pattern learning
    - Metrics tracking
    """
    
    def __init__(self, model, config, device='cuda'):
        self.model = model.to(device)
        self.config = config
        self.device = device
        
        self.optimizer = torch.optim.AdamW(
            model.parameters(),
            lr=config['learning_rate'],
            weight_decay=config.get('weight_decay', 0.01)
        )
        
        self.scheduler = torch.optim.lr_scheduler.OneCycleLR(
            self.optimizer,
            max_lr=config['learning_rate'],
            epochs=config['epochs'],
            steps_per_epoch=config['steps_per_epoch']
        )
    
    def train_epoch(self, train_loader):
        """Train for one epoch."""
        self.model.train()
        epoch_loss = 0
        
        for batch in tqdm(train_loader):
            # Move batch to device
            input_ids = batch['input_ids'].to(self.device)
            attention_mask = batch['attention_mask'].to(self.device)
            
            # Forward pass
            outputs = self.model(input_ids, attention_mask=attention_mask)
            
            # Calculate loss
            loss = outputs.loss
            
            # Backward pass
            self.optimizer.zero_grad()
            loss.backward()
            torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
            self.optimizer.step()
            self.scheduler.step()
            
            epoch_loss += loss.item()
        
        return epoch_loss / len(train_loader)

    def evaluate(self, val_loader):
        """Evaluate the model."""
        self.model.eval()
        val_loss = 0
        
        with torch.no_grad():
            for batch in val_loader:
                input_ids = batch['input_ids'].to(self.device)
                attention_mask = batch['attention_mask'].to(self.device)
                
                outputs = self.model(input_ids, attention_mask=attention_mask)
                loss = outputs.loss
                
                val_loss += loss.item()
        
        return val_loss / len(val_loader)

# 4. Generation and Inference
class LyricsGenerator:
    """
    Lyrics generation interface.
    
    Features:
    - Prompt-based generation
    - Style control
    - Rhyme scheme enforcement
    - Structure management
    """
    
    def __init__(self, model, tokenizer, device='cuda'):
        self.model = model.to(device)
        self.tokenizer = tokenizer
        self.device = device
        
    def generate(self, prompt, style=None, max_length=200):
        """Generate lyrics from prompt."""
        self.model.eval()
        
        # Prepare input
        input_text = prompt if style is None else f"<|style|>{style}<|prompt|>{prompt}"
        input_ids = self.tokenizer.encode(input_text, return_tensors='pt').to(self.device)
        
        # Generate
        outputs = self.model.generate(
            input_ids,
            max_length=max_length,
            num_return_sequences=1,
            no_repeat_ngram_size=3,
            do_sample=True,
            top_k=50,
            top_p=0.95,
            temperature=0.7
        )
        
        # Decode
        generated_lyrics = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
        
        return generated_lyrics

# 5. Evaluation
class LyricsEvaluator:
    """
    Evaluation metrics for lyrics generation.
    
    Metrics:
    - Rhyme quality
    - Syllable count
    - Theme consistency
    - Style adherence
    """
    
    def __init__(self, model, tokenizer):
        self.model = model
        self.tokenizer = tokenizer
        
    def evaluate_rhyme(self, lyrics):
        """Evaluate rhyme patterns."""
        # Implement rhyme detection and scoring
        pass
    
    def evaluate_structure(self, lyrics):
        """Evaluate lyrical structure."""
        # Implement structure analysis
        pass
    
    def evaluate_theme(self, lyrics, prompt):
        """Evaluate theme consistency."""
        # Implement theme analysis
        pass

# Example Usage
def main():
    # Load config
    with open('models/lyrics-gen/config/model_config.json') as f:
        config = json.load(f)
    
    # Initialize model and tokenizer
    model = LyricsTransformer()
    tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
    
    # Create datasets
    train_dataset = LyricsDataset('datasets/lyrics/train')
    val_dataset = LyricsDataset('datasets/lyrics/val')
    
    # Initialize trainer
    trainer = LyricsTrainer(model, config)
    
    # Train model
    for epoch in range(config['epochs']):
        train_loss = trainer.train_epoch(train_dataset)
        val_loss = trainer.evaluate(val_dataset)
        print(f"Epoch {epoch}: Train Loss = {train_loss:.4f}, Val Loss = {val_loss:.4f}")
    
    # Generate sample
    generator = LyricsGenerator(model, tokenizer)
    lyrics = generator.generate(
        prompt="Write a love song about summer",
        style="pop"
    )
    print("Generated Lyrics:", lyrics)

if __name__ == "__main__":
    main()




# Additional Features for Lyrics Generation

# 1. Enhanced Style Control and Structure
class EnhancedLyricsGenerator(LyricsGenerator):
    """
    Enhanced lyrics generator with advanced features.
    
    Additional Features:
    - Song structure management (verse, chorus, bridge)
    - Rhyme scheme control
    - Syllable count management
    - Emotional tone control
    - Genre-specific patterns
    - Metaphor and imagery enhancement
    """
    
    def generate_structured_song(self, prompt, structure_dict):
        """
        Generate a complete song with specified structure.
        
        Args:
            prompt (str): Main theme/topic
            structure_dict (dict): Song structure specification
                Example:
                {
                    'verse1': {'lines': 4, 'syllables_per_line': 8, 'rhyme_scheme': 'AABB'},
                    'chorus': {'lines': 4, 'syllables_per_line': 6, 'rhyme_scheme': 'ABAB'},
                    'verse2': {'lines': 4, 'syllables_per_line': 8, 'rhyme_scheme': 'AABB'},
                    'bridge': {'lines': 2, 'syllables_per_line': 10, 'rhyme_scheme': 'AA'},
                }
        
        Returns:
            dict: Generated song sections with metadata
        """
        song_parts = {}
        
        for section, specs in structure_dict.items():
            section_prompt = self._create_section_prompt(
                base_prompt=prompt,
                section_type=section,
                specifications=specs
            )
            
            generated_section = self.generate_section(
                prompt=section_prompt,
                rhyme_scheme=specs['rhyme_scheme'],
                syllables=specs['syllables_per_line'],
                num_lines=specs['lines']
            )
            
            song_parts[section] = generated_section
        
        return self._compile_song(song_parts)
    
    def generate_with_emotion(self, prompt, emotion_params):
        """
        Generate lyrics with specific emotional qualities.
        
        Args:
            prompt (str): Base prompt
            emotion_params (dict): Emotional parameters
                Example:
                {
                    'primary_emotion': 'joy',
                    'intensity': 0.8,
                    'tone': 'uplifting',
                    'imagery_type': 'nature',
                    'word_choices': 'positive'
                }
        """
        # Enhance prompt with emotional context
        enhanced_prompt = self._add_emotional_context(prompt, emotion_params)
        
        # Generate with emotion-specific settings
        return self.generate(
            prompt=enhanced_prompt,
            temperature=self._get_emotion_temperature(emotion_params),
            top_p=self._get_emotion_top_p(emotion_params)
        )

    def generate_with_metaphors(self, prompt, theme_params):
        """
        Generate lyrics rich in metaphors and imagery.
        
        Args:
            prompt (str): Base prompt
            theme_params (dict): Theme and metaphor specifications
                Example:
                {
                    'primary_theme': 'love',
                    'metaphor_source': 'ocean',
                    'imagery_type': 'visual',
                    'complexity_level': 'advanced'
                }
        """
        metaphor_enhanced_prompt = self._enhance_with_metaphors(prompt, theme_params)
        return self.generate(prompt=metaphor_enhanced_prompt)

    def _enhance_with_metaphors(self, prompt, theme_params):
        """Add metaphorical elements to prompt."""
        metaphor_templates = {
            'love': {
                'ocean': [
                    "deep as the ocean",
                    "waves of emotion",
                    "tidal force of feeling"
                ],
                'fire': [
                    "burning passion",
                    "flame of desire",
                    "scorching intensity"
                ]
            }
            # Add more themes and metaphor sources
        }
        
        # Select appropriate metaphors
        chosen_metaphors = self._select_metaphors(
            metaphor_templates,
            theme_params
        )
        
        # Enhance prompt with metaphors
        return f"{prompt} {' '.join(chosen_metaphors)}"

class RhymeController:
    """
    Controls rhyme patterns in generated lyrics.
    
    Features:
    - Multiple rhyme scheme support
    - Syllable counting
    - Assonance detection
    - Alliteration management
    """
    
    def __init__(self):
        self.pronunciations = self._load_pronunciations()
        
    def enforce_rhyme_scheme(self, lines, scheme):
        """
        Modify lines to follow rhyme scheme.
        
        Args:
            lines (list): Generated lines
            scheme (str): Rhyme scheme (e.g., 'AABB', 'ABAB')
            
        Returns:
            list: Modified lines with proper rhyming
        """
        rhyme_groups = self._create_rhyme_groups(scheme)
        return self._modify_line_endings(lines, rhyme_groups)
    
    def _get_rhyming_words(self, word):
        """Find words that rhyme with given word."""
        pronunciation = self.pronunciations.get(word.lower())
        if not pronunciation:
            return []
        
        rhyming_words = []
        for w, p in self.pronunciations.items():
            if self._is_rhyme(pronunciation, p):
                rhyming_words.append(w)
                
        return rhyming_words

# Advanced Evaluation Metrics
class EnhancedLyricsEvaluator(LyricsEvaluator):
    """
    Comprehensive evaluation suite for lyrics generation.
    
    Metrics Categories:
    1. Technical Quality
    2. Musical Compatibility
    3. Content Analysis
    4. Style Adherence
    """
    
    def evaluate_comprehensive(self, lyrics, target_style=None):
        """
        Run comprehensive evaluation on generated lyrics.
        
        Returns:
            dict: Complete evaluation metrics
        """
        return {
            'technical': self.evaluate_technical(lyrics),
            'musical': self.evaluate_musical(lyrics),
            'content': self.evaluate_content(lyrics),
            'style': self.evaluate_style(lyrics, target_style)
        }
    
    def evaluate_technical(self, lyrics):
        """Evaluate technical aspects of lyrics."""
        return {
            'rhyme_quality': self._analyze_rhyme_patterns(lyrics),
            'syllable_consistency': self._analyze_syllable_patterns(lyrics),
            'vocabulary_richness': self._calculate_vocabulary_metrics(lyrics),
            'grammar_score': self._check_grammar(lyrics)
        }
    
    def evaluate_musical(self, lyrics):
        """Evaluate musical compatibility."""
        return {
            'rhythm_score': self._analyze_rhythm(lyrics),
            'singability': self._evaluate_singability(lyrics),
            'phrase_length': self._analyze_phrase_length(lyrics),
            'stress_patterns': self._analyze_stress_patterns(lyrics)
        }
    
    def evaluate_content(self, lyrics):
        """Evaluate lyrical content quality."""
        return {
            'theme_coherence': self._analyze_theme_consistency(lyrics),
            'emotional_impact': self._analyze_emotional_content(lyrics),
            'imagery_score': self._evaluate_imagery(lyrics),
            'narrative_strength': self._analyze_narrative(lyrics)
        }

# Example Usage and Scenarios

def demonstrate_lyrics_generation():
    """
    Demonstrate various lyrics generation scenarios.
    """
    
    # Initialize generator
    generator = EnhancedLyricsGenerator(model, tokenizer)
    
    # 1. Generate a complete pop song
    pop_structure = {
        'verse1': {
            'lines': 4,
            'syllables_per_line': 8,
            'rhyme_scheme': 'AABB'
        },
        'chorus': {
            'lines': 4,
            'syllables_per_line': 6,
            'rhyme_scheme': 'ABAB'
        },
        'verse2': {
            'lines': 4,
            'syllables_per_line': 8,
            'rhyme_scheme': 'AABB'
        }
    }
    
    pop_song = generator.generate_structured_song(
        prompt="A summer love story",
        structure_dict=pop_structure
    )
    
    # 2. Generate emotional ballad
    emotion_params = {
        'primary_emotion': 'longing',
        'intensity': 0.9,
        'tone': 'melancholic',
        'imagery_type': 'nature',
        'word_choices': 'poetic'
    }
    
    ballad = generator.generate_with_emotion(
        prompt="Lost love and memories",
        emotion_params=emotion_params
    )
    
    # 3. Generate metaphorical lyrics
    theme_params = {
        'primary_theme': 'love',
        'metaphor_source': 'ocean',
        'imagery_type': 'visual',
        'complexity_level': 'advanced'
    }
    
    metaphorical = generator.generate_with_metaphors(
        prompt="Finding inner strength",
        theme_params=theme_params
    )
    
    return {
        'pop_song': pop_song,
        'ballad': ballad,
        'metaphorical': metaphorical
    }


# Integration with Melody Generation
class SongIntegrator:
    """
    Integrates lyrics and melody generation.
    
    Features:
    - Synchronizes lyrics with melody
    - Adjusts rhythm to match syllables
    - Ensures musical phrase alignment
    """
    
    def __init__(self, lyrics_generator, melody_generator):
        self.lyrics_generator = lyrics_generator
        self.melody_generator = melody_generator
    
    def generate_complete_song(self, prompt, style):
        """
        Generate a complete song with matching lyrics and melody.
        
        Args:
            prompt (str): Song theme/topic
            style (dict): Musical and lyrical style parameters
            
        Returns:
            dict: Complete song with melody and lyrics
        """
        # Generate lyrics first
        lyrics = self.lyrics_generator.generate_structured_song(
            prompt=prompt,
            structure_dict=self._get_structure_for_style(style)
        )
        
        # Generate matching melody
        melody = self.melody_generator.generate_with_structure(
            prompt=prompt,
            form=self._extract_form_from_lyrics(lyrics)
        )
        
        # Align lyrics and melody
        aligned_song = self._align_lyrics_and_melody(lyrics, melody)
        
        return aligned_song
    
    def _align_lyrics_and_melody(self, lyrics, melody):
        """Align lyrics with melody phrases."""
        aligned = {}
        
        for section in lyrics:
            section_melody = melody[section]
            section_lyrics = lyrics[section]
            
            # Adjust melody note durations to match syllables
            adjusted_melody = self._adjust_melody_to_lyrics(
                section_melody,
                self._count_syllables(section_lyrics)
            )
            
            aligned[section] = {
                'lyrics': section_lyrics,
                'melody': adjusted_melody
            }
        
        return aligned

def example_complete_song():
    """
    Generate and demonstrate a complete song.
    """
    # Initialize components
    lyrics_gen = EnhancedLyricsGenerator(lyrics_model, tokenizer)
    melody_gen = MelodyGenerator(melody_model)
    integrator = SongIntegrator(lyrics_gen, melody_gen)
    
    # Generate complete song
    song = integrator.generate_complete_song(
        prompt="A hopeful song about new beginnings",
        style={
            'genre': 'pop',
            'mood': 'uplifting',
            'tempo': 'moderate',
            'complexity': 'medium'
        }
    )
    
    # Evaluate the result
    evaluator = EnhancedLyricsEvaluator(lyrics_model, tokenizer)
    evaluation = evaluator.evaluate_comprehensive(
        song['lyrics'],
        target_style='pop'
    )
    
    return {
        'song': song,
        'evaluation': evaluation
    }

if __name__ == "__main__":
    # Run demonstrations
    lyrics_examples = demonstrate_lyrics_generation()
    complete_song = example_complete_song()
    
    # Print results
    print("Generated Lyrics Examples:")
    print(json.dumps(lyrics_examples, indent=2))
    
    print("\nComplete Song Generation:")
    print(json.dumps(complete_song, indent=2))