ravfogs commited on
Commit
8fb1779
·
1 Parent(s): 0efa856

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -0
README.md ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-3.0
3
+ language:
4
+ - en
5
+ ---
6
+
7
+ A model for mapping abstract sentence descriptions to sentences that fit the descriptions. Trained on Pubmed sentences. Use ```load_finetuned_model``` to load the query and sentence encoder, and ```encode_batch()``` to encode a sentence with the model.
8
+
9
+ ```python
10
+
11
+ from transformers import AutoTokenizer, AutoModel
12
+ import torch
13
+
14
+ def load_finetuned_model():
15
+
16
+
17
+ sentence_encoder = AutoModel.from_pretrained("ravfogs/abstract-sim-sentence-pubmed")
18
+ query_encoder = AutoModel.from_pretrained("ravfogs/abstract-sim-query-pubmed")
19
+ tokenizer = AutoTokenizer.from_pretrained("ravfogs/abstract-sim-sentence-pubmed")
20
+
21
+ return tokenizer, query_encoder, sentence_encoder
22
+
23
+
24
+ def encode_batch(model, tokenizer, sentences, device):
25
+ input_ids = tokenizer(sentences, padding=True, max_length=512, truncation=True, return_tensors="pt",
26
+ add_special_tokens=True).to(device)
27
+ features = model(**input_ids)[0]
28
+ features = torch.sum(features[:,1:,:] * input_ids["attention_mask"][:,1:].unsqueeze(-1), dim=1) / torch.clamp(torch.sum(input_ids["attention_mask"][:,1:], dim=1, keepdims=True), min=1e-9)
29
+ return features
30
+
31
+ ```