bishmoy commited on
Commit
b1e6538
1 Parent(s): 862ed90

Initial Commit Lunar Lander

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
LunarStepper.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3221f1354ea884c4d405992c3984ad022ef5a67b6f7bc7dbef239676daad3b2f
3
+ size 144101
LunarStepper/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
LunarStepper/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f65a7af3200>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f65a7af3290>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f65a7af3320>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f65a7af33b0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f65a7af3440>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f65a7af34d0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f65a7af3560>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f65a7af35f0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f65a7af3680>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f65a7af3710>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f65a7af37a0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f65a7b472d0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 524288,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651829476.232009,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFqJ9z2FBL0/Wt3QPlF4db7MLZY9gGNPPgAAAAAAAAAAC1nXvkBeLz8eYb29A951vrrQxL0IlE49AAAAAAAAAABmKta7wByzP5B5Kb9QDAS/AWL4O+eNGT4AAAAAAAAAAGBOH75QYMY+m40FPov6Xb5ysCM9BjtJPQAAAAAAAAAA4KsVvk+MRj+myw6+ZwagvsIK8LxigAu8AAAAAAAAAACAw929N5CWP2d7G79XCRy/54U6vLTmBr4AAAAAAAAAAE0KpL1rvGM/UETnOwtepb6fVG29K4J0vAAAAAAAAAAAWvZkvr1jFT6GiBQ8XU0/vuG0F71oHMM7AAAAAAAAAADNhmQ+WiRHP4L8PD7dfr2+HOPpPa6AVTwAAAAAAAAAALLHrL6lx5+9hMM+vd//+zzZXMc+9R2WvAAAgD8AAIA/auF/vmd8pD8fCKa+Dta7vlXeGr7KKdG8AAAAAAAAAADmgda9SGGNN3pSIj6HqmK2GbXiO8YZc7UAAIA/AAAAAFDP9b7AL8Q+wEpIPcwEOb5p5IG9bk4AuwAAAAAAAAAAwI/EPQB/kT9a5cY+GasVvxizRD2KvRE+AAAAAAAAAADmuNI924egP3LNHz59Ccy+RmGSPUjZtLwAAAAAAAAAABPmc7644Om7IUSguidEkTxhikQ9yu1zvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAQAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.04857599999999995,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImIqNeR22bkCUhpRSlIwBbJRNTAGMAXSUR0CSW2/RmbsodX2UKGgGaAloD0MIM4tQbIUHb0CUhpRSlGgVTeoCaBZHQJJcZ0vGp/B1fZQoaAZoCWgPQwiaIyu/DI9wQJSGlFKUaBVNQgFoFkdAklzakM1CPnV9lChoBmgJaA9DCK0x6IRQGXBAlIaUUpRoFU2VAWgWR0CSXOk30f5ldX2UKGgGaAloD0MISb2ncprNcECUhpRSlGgVTeEBaBZHQJJdL/lyR0V1fZQoaAZoCWgPQwg3NdB8Dk5wQJSGlFKUaBVNcwFoFkdAkmDff4yoGnV9lChoBmgJaA9DCBGrP8Kw6WpAlIaUUpRoFU1ZAWgWR0CSYPltTDO1dX2UKGgGaAloD0MIkXu6uuO8bUCUhpRSlGgVTVMBaBZHQJJhHOs1baB1fZQoaAZoCWgPQwh4YWu28gpgQJSGlFKUaBVN6ANoFkdAkmS9ZA6dUnV9lChoBmgJaA9DCMyXF2AfcltAlIaUUpRoFU3oA2gWR0CSZQkBS1mbdX2UKGgGaAloD0MIvkupSwabcECUhpRSlGgVTVoBaBZHQJJotIRRMvh1fZQoaAZoCWgPQwg7URIS6eZwQJSGlFKUaBVNbgFoFkdAkmplp9JBgXV9lChoBmgJaA9DCOLIA5FFhG1AlIaUUpRoFU0+AWgWR0CSaxPmPo3adX2UKGgGaAloD0MIYJM16uENcUCUhpRSlGgVTbwBaBZHQJMJBXbM5fd1fZQoaAZoCWgPQwhj8DDtmwhXQJSGlFKUaBVN6ANoFkdAkwlR5X2du3V9lChoBmgJaA9DCLivA+eMfG1AlIaUUpRoFU1uAWgWR0CTCqPsAvL6dX2UKGgGaAloD0MIYRvxZHdIcECUhpRSlGgVTR4BaBZHQJMLCCz1K5F1fZQoaAZoCWgPQwiyZ89l6tFvQJSGlFKUaBVNgwFoFkdAkwtN6LOzIHV9lChoBmgJaA9DCPlkxXD1dXBAlIaUUpRoFU2QAWgWR0CTDLTbFjusdX2UKGgGaAloD0MIRztu+F2rcUCUhpRSlGgVTZsBaBZHQJMM7zz3AVR1fZQoaAZoCWgPQwjePUD35TA7QJSGlFKUaBVL9GgWR0CTDV+AEt/XdX2UKGgGaAloD0MIcOoDyTuRb0CUhpRSlGgVTWkBaBZHQJMOae2/i5x1fZQoaAZoCWgPQwgxKNNoslpxQJSGlFKUaBVN6QFoFkdAkw8fDYRNAXV9lChoBmgJaA9DCNpVSPnJvW5AlIaUUpRoFU2LAWgWR0CTEB0F8ohIdX2UKGgGaAloD0MIfPDapY0ybUCUhpRSlGgVTUMBaBZHQJMQhDYywfR1fZQoaAZoCWgPQwgCucSRh+psQJSGlFKUaBVNLQFoFkdAkxL0KRdQf3V9lChoBmgJaA9DCEXxKmvb1HBAlIaUUpRoFU0fAWgWR0CTFrxlg+hXdX2UKGgGaAloD0MI+1qXGqGCb0CUhpRSlGgVTWEBaBZHQJMXKVt4zJp1fZQoaAZoCWgPQwi4I5wWvIVrQJSGlFKUaBVNSAFoFkdAkxk6lHjIaXV9lChoBmgJaA9DCIzWUdWE8mZAlIaUUpRoFU1UA2gWR0CTGUjpcHGCdX2UKGgGaAloD0MIXKyowTQARUCUhpRSlGgVTQkBaBZHQJMaG8tf5UN1fZQoaAZoCWgPQwjqQUEpWpZsQJSGlFKUaBVNVQFoFkdAkxskUKzAvnV9lChoBmgJaA9DCJ7sZkY/yiVAlIaUUpRoFU0AAWgWR0CTG8Ui6g/UdX2UKGgGaAloD0MIizcyj/yUbkCUhpRSlGgVTTsBaBZHQJMcL1pTMq11fZQoaAZoCWgPQwiBXrhz4RZtQJSGlFKUaBVNbgFoFkdAkxzH1zySWHV9lChoBmgJaA9DCG8MAcAxkmxAlIaUUpRoFU2BAWgWR0CTHew2VE/jdX2UKGgGaAloD0MIqb2ItuNbcECUhpRSlGgVTR4BaBZHQJMeuXqqwQl1fZQoaAZoCWgPQwgAVkeOdM1uQJSGlFKUaBVNggFoFkdAkx888ox59nV9lChoBmgJaA9DCIC4q1eR1XBAlIaUUpRoFU1jAWgWR0CTJHtUn5SFdX2UKGgGaAloD0MIXFZhM8BlQ0CUhpRSlGgVS+1oFkdAkySWhqTKT3V9lChoBmgJaA9DCPJ376gxam9AlIaUUpRoFU0gAWgWR0CTJS8A7xNJdX2UKGgGaAloD0MI8Pj2rsEjbkCUhpRSlGgVTSkBaBZHQJMlPNQj2SN1fZQoaAZoCWgPQwjgLZCg+Gk3wJSGlFKUaBVNCQFoFkdAkyfGlyimEXV9lChoBmgJaA9DCExQw7ew6EJAlIaUUpRoFUvAaBZHQJMofgNwzch1fZQoaAZoCWgPQwi29j5Vhf5tQJSGlFKUaBVNTwFoFkdAkymKkRBeHHV9lChoBmgJaA9DCHPzjege4m9AlIaUUpRoFU0jAWgWR0CTKjCxu89PdX2UKGgGaAloD0MI1y/YDdurb0CUhpRSlGgVTVUBaBZHQJMqsZ4wAVB1fZQoaAZoCWgPQwhMa9PYXrdrQJSGlFKUaBVNOwFoFkdAky0XYpUgjnV9lChoBmgJaA9DCBmRKLQs3nFAlIaUUpRoFU0cAWgWR0CTMzzposZpdX2UKGgGaAloD0MIEw1S8JSEbECUhpRSlGgVTTgBaBZHQJM1uamXPZ91fZQoaAZoCWgPQwhjYB3HD71wQJSGlFKUaBVNKAFoFkdAkzjEFr2xp3V9lChoBmgJaA9DCDwTmiRWtHFAlIaUUpRoFU0eAmgWR0CTOMo24uscdX2UKGgGaAloD0MImUf+YOD1W0CUhpRSlGgVTegDaBZHQJM5Y8eS0Sh1fZQoaAZoCWgPQwg8TzxnC85qQJSGlFKUaBVNRwFoFkdAkznZ0CA+ZHV9lChoBmgJaA9DCLEVNC0xUGtAlIaUUpRoFU07AWgWR0CTOwMqz7djdX2UKGgGaAloD0MI71TAPU/WbUCUhpRSlGgVTTQBaBZHQJM7WicoYvZ1fZQoaAZoCWgPQwjsbMg/MygYQJSGlFKUaBVL/WgWR0CTO57BwdbQdX2UKGgGaAloD0MIJm2q7pEtYMCUhpRSlGgVTU4DaBZHQJM7nfl6qsF1fZQoaAZoCWgPQwj26053HoxwQJSGlFKUaBVNtAFoFkdAkzwmpVCHAXV9lChoBmgJaA9DCOviNhoAgXBAlIaUUpRoFU1YAWgWR0CTPWzWPLgXdX2UKGgGaAloD0MIo7H2d7ZaVkCUhpRSlGgVTegDaBZHQJNA0/gR9PV1fZQoaAZoCWgPQwiWsaGb/QVDQJSGlFKUaBVLxmgWR0CTQ3E/0NBodX2UKGgGaAloD0MIMSb9vVSjcUCUhpRSlGgVTScBaBZHQJNIA/Y8Md91fZQoaAZoCWgPQwiNtiqJ7OMrwJSGlFKUaBVNCgFoFkdAk0j9+G47R3V9lChoBmgJaA9DCFyRmKDGyXFAlIaUUpRoFU0wAWgWR0CTSTNnXd0rdX2UKGgGaAloD0MIYtnMIak1cECUhpRSlGgVTZQBaBZHQJNJRUPxx1h1fZQoaAZoCWgPQwgQXOUJRD9wQJSGlFKUaBVNTAFoFkdAk0oyLAHminV9lChoBmgJaA9DCO3yrQ/ri25AlIaUUpRoFU06AWgWR0CTS1wG4ZuRdX2UKGgGaAloD0MIaJPDJx1fcUCUhpRSlGgVTVcBaBZHQJNNbrZ8KHB1fZQoaAZoCWgPQwjEeM2rOsleQJSGlFKUaBVN6ANoFkdAk0/Qi3XqaHV9lChoBmgJaA9DCNvEyf0O9m1AlIaUUpRoFU2XAWgWR0CTUVxvegtfdX2UKGgGaAloD0MIDLJl+XrJckCUhpRSlGgVTaIBaBZHQJNRXfl6qsF1fZQoaAZoCWgPQwgGSDSBIrNaQJSGlFKUaBVN6ANoFkdAk1LVxbSql3V9lChoBmgJaA9DCN3QlJ0+JHFAlIaUUpRoFU2eAWgWR0CTUxXUpd8idX2UKGgGaAloD0MI0SNGzy3LcUCUhpRSlGgVTRUBaBZHQJNXkcABDG91fZQoaAZoCWgPQwhcy2Q4nj9VQJSGlFKUaBVN6ANoFkdAk1pdqxkd3nV9lChoBmgJaA9DCHr+tFEd2nBAlIaUUpRoFU0pAWgWR0CTWwS8J2MbdX2UKGgGaAloD0MI5XtGIjRJcECUhpRSlGgVTUABaBZHQJNbIl8gIQh1fZQoaAZoCWgPQwjtDb4wGfpuQJSGlFKUaBVNcAFoFkdAk1u5wCKaX3V9lChoBmgJaA9DCC0I5X0cDm9AlIaUUpRoFU1wAWgWR0CTXLNzr/sFdX2UKGgGaAloD0MIqkca3Ja3cECUhpRSlGgVTX0BaBZHQJNdGoIfKZF1fZQoaAZoCWgPQwjytWeWBLRkQJSGlFKUaBVNPgJoFkdAk1+EpEx7A3V9lChoBmgJaA9DCIkmUMSiXm5AlIaUUpRoFU00AWgWR0CTYXlTFVDKdX2UKGgGaAloD0MIaLEUyZcAc0CUhpRSlGgVTTgBaBZHQJNht1loUSJ1fZQoaAZoCWgPQwjOb5hoEMZuQJSGlFKUaBVNHgFoFkdAk2IFBIFvAHV9lChoBmgJaA9DCDPC24NQWHBAlIaUUpRoFU13AWgWR0CTY0DcuanadX2UKGgGaAloD0MInZ/iOPCfbkCUhpRSlGgVTT4BaBZHQJNjsob4rSV1fZQoaAZoCWgPQwjZ0M3+wMZqQJSGlFKUaBVN5AFoFkdAk2Yms/6frnV9lChoBmgJaA9DCNI6qpoguiZAlIaUUpRoFUvzaBZHQJNm6FmFrVR1fZQoaAZoCWgPQwh+ObNdoaliQJSGlFKUaBVN6ANoFkdAk2nQ/1QIlnV9lChoBmgJaA9DCHtP5bRnaHBAlIaUUpRoFU0pAWgWR0CTa1sZ5zHTdX2UKGgGaAloD0MInyKHiFsWckCUhpRSlGgVTWwBaBZHQJNspxdY4hl1fZQoaAZoCWgPQwhGPxpOGcVtQJSGlFKUaBVNYAFoFkdAk2y2nn+yaHV9lChoBmgJaA9DCKzj+KFSdW1AlIaUUpRoFU1IAWgWR0CTbYyksSTRdX2UKGgGaAloD0MI8gwa+ifpcECUhpRSlGgVTXIBaBZHQJNuQ1Nxlxx1fZQoaAZoCWgPQwglCFdAIbxqQJSGlFKUaBVNvwFoFkdAk26Cc0+C9XV9lChoBmgJaA9DCIJxcOmYgWtAlIaUUpRoFU0fAWgWR0CTb9Ssr/bTdX2UKGgGaAloD0MIMC/APnrEcECUhpRSlGgVTU4BaBZHQJNwEIMSbph1fZQoaAZoCWgPQwivmBHenk9xQJSGlFKUaBVL/mgWR0CTcD2M85jpdX2UKGgGaAloD0MIPSmTGlqUbUCUhpRSlGgVTT0BaBZHQJNw3lp48lp1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 160,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
LunarStepper/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d13c17d99cc1d56ee6c597146ec781f76318240dcb2477789cf1fd42b72d195
3
+ size 84893
LunarStepper/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdbb78cf3563a9eba42a833398ac97ad84feacdda96972f00bde18f816eebff3
3
+ size 43201
LunarStepper/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
LunarStepper/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 189.23 +/- 88.16
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f65a7af3200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f65a7af3290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f65a7af3320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f65a7af33b0>", "_build": "<function ActorCriticPolicy._build at 0x7f65a7af3440>", "forward": "<function ActorCriticPolicy.forward at 0x7f65a7af34d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f65a7af3560>", "_predict": "<function ActorCriticPolicy._predict at 0x7f65a7af35f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f65a7af3680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f65a7af3710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f65a7af37a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f65a7b472d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651829476.232009, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFqJ9z2FBL0/Wt3QPlF4db7MLZY9gGNPPgAAAAAAAAAAC1nXvkBeLz8eYb29A951vrrQxL0IlE49AAAAAAAAAABmKta7wByzP5B5Kb9QDAS/AWL4O+eNGT4AAAAAAAAAAGBOH75QYMY+m40FPov6Xb5ysCM9BjtJPQAAAAAAAAAA4KsVvk+MRj+myw6+ZwagvsIK8LxigAu8AAAAAAAAAACAw929N5CWP2d7G79XCRy/54U6vLTmBr4AAAAAAAAAAE0KpL1rvGM/UETnOwtepb6fVG29K4J0vAAAAAAAAAAAWvZkvr1jFT6GiBQ8XU0/vuG0F71oHMM7AAAAAAAAAADNhmQ+WiRHP4L8PD7dfr2+HOPpPa6AVTwAAAAAAAAAALLHrL6lx5+9hMM+vd//+zzZXMc+9R2WvAAAgD8AAIA/auF/vmd8pD8fCKa+Dta7vlXeGr7KKdG8AAAAAAAAAADmgda9SGGNN3pSIj6HqmK2GbXiO8YZc7UAAIA/AAAAAFDP9b7AL8Q+wEpIPcwEOb5p5IG9bk4AuwAAAAAAAAAAwI/EPQB/kT9a5cY+GasVvxizRD2KvRE+AAAAAAAAAADmuNI924egP3LNHz59Ccy+RmGSPUjZtLwAAAAAAAAAABPmc7644Om7IUSguidEkTxhikQ9yu1zvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAQAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImIqNeR22bkCUhpRSlIwBbJRNTAGMAXSUR0CSW2/RmbsodX2UKGgGaAloD0MIM4tQbIUHb0CUhpRSlGgVTeoCaBZHQJJcZ0vGp/B1fZQoaAZoCWgPQwiaIyu/DI9wQJSGlFKUaBVNQgFoFkdAklzakM1CPnV9lChoBmgJaA9DCK0x6IRQGXBAlIaUUpRoFU2VAWgWR0CSXOk30f5ldX2UKGgGaAloD0MISb2ncprNcECUhpRSlGgVTeEBaBZHQJJdL/lyR0V1fZQoaAZoCWgPQwg3NdB8Dk5wQJSGlFKUaBVNcwFoFkdAkmDff4yoGnV9lChoBmgJaA9DCBGrP8Kw6WpAlIaUUpRoFU1ZAWgWR0CSYPltTDO1dX2UKGgGaAloD0MIkXu6uuO8bUCUhpRSlGgVTVMBaBZHQJJhHOs1baB1fZQoaAZoCWgPQwh4YWu28gpgQJSGlFKUaBVN6ANoFkdAkmS9ZA6dUnV9lChoBmgJaA9DCMyXF2AfcltAlIaUUpRoFU3oA2gWR0CSZQkBS1mbdX2UKGgGaAloD0MIvkupSwabcECUhpRSlGgVTVoBaBZHQJJotIRRMvh1fZQoaAZoCWgPQwg7URIS6eZwQJSGlFKUaBVNbgFoFkdAkmplp9JBgXV9lChoBmgJaA9DCOLIA5FFhG1AlIaUUpRoFU0+AWgWR0CSaxPmPo3adX2UKGgGaAloD0MIYJM16uENcUCUhpRSlGgVTbwBaBZHQJMJBXbM5fd1fZQoaAZoCWgPQwhj8DDtmwhXQJSGlFKUaBVN6ANoFkdAkwlR5X2du3V9lChoBmgJaA9DCLivA+eMfG1AlIaUUpRoFU1uAWgWR0CTCqPsAvL6dX2UKGgGaAloD0MIYRvxZHdIcECUhpRSlGgVTR4BaBZHQJMLCCz1K5F1fZQoaAZoCWgPQwiyZ89l6tFvQJSGlFKUaBVNgwFoFkdAkwtN6LOzIHV9lChoBmgJaA9DCPlkxXD1dXBAlIaUUpRoFU2QAWgWR0CTDLTbFjusdX2UKGgGaAloD0MIRztu+F2rcUCUhpRSlGgVTZsBaBZHQJMM7zz3AVR1fZQoaAZoCWgPQwjePUD35TA7QJSGlFKUaBVL9GgWR0CTDV+AEt/XdX2UKGgGaAloD0MIcOoDyTuRb0CUhpRSlGgVTWkBaBZHQJMOae2/i5x1fZQoaAZoCWgPQwgxKNNoslpxQJSGlFKUaBVN6QFoFkdAkw8fDYRNAXV9lChoBmgJaA9DCNpVSPnJvW5AlIaUUpRoFU2LAWgWR0CTEB0F8ohIdX2UKGgGaAloD0MIfPDapY0ybUCUhpRSlGgVTUMBaBZHQJMQhDYywfR1fZQoaAZoCWgPQwgCucSRh+psQJSGlFKUaBVNLQFoFkdAkxL0KRdQf3V9lChoBmgJaA9DCEXxKmvb1HBAlIaUUpRoFU0fAWgWR0CTFrxlg+hXdX2UKGgGaAloD0MI+1qXGqGCb0CUhpRSlGgVTWEBaBZHQJMXKVt4zJp1fZQoaAZoCWgPQwi4I5wWvIVrQJSGlFKUaBVNSAFoFkdAkxk6lHjIaXV9lChoBmgJaA9DCIzWUdWE8mZAlIaUUpRoFU1UA2gWR0CTGUjpcHGCdX2UKGgGaAloD0MIXKyowTQARUCUhpRSlGgVTQkBaBZHQJMaG8tf5UN1fZQoaAZoCWgPQwjqQUEpWpZsQJSGlFKUaBVNVQFoFkdAkxskUKzAvnV9lChoBmgJaA9DCJ7sZkY/yiVAlIaUUpRoFU0AAWgWR0CTG8Ui6g/UdX2UKGgGaAloD0MIizcyj/yUbkCUhpRSlGgVTTsBaBZHQJMcL1pTMq11fZQoaAZoCWgPQwiBXrhz4RZtQJSGlFKUaBVNbgFoFkdAkxzH1zySWHV9lChoBmgJaA9DCG8MAcAxkmxAlIaUUpRoFU2BAWgWR0CTHew2VE/jdX2UKGgGaAloD0MIqb2ItuNbcECUhpRSlGgVTR4BaBZHQJMeuXqqwQl1fZQoaAZoCWgPQwgAVkeOdM1uQJSGlFKUaBVNggFoFkdAkx888ox59nV9lChoBmgJaA9DCIC4q1eR1XBAlIaUUpRoFU1jAWgWR0CTJHtUn5SFdX2UKGgGaAloD0MIXFZhM8BlQ0CUhpRSlGgVS+1oFkdAkySWhqTKT3V9lChoBmgJaA9DCPJ376gxam9AlIaUUpRoFU0gAWgWR0CTJS8A7xNJdX2UKGgGaAloD0MI8Pj2rsEjbkCUhpRSlGgVTSkBaBZHQJMlPNQj2SN1fZQoaAZoCWgPQwjgLZCg+Gk3wJSGlFKUaBVNCQFoFkdAkyfGlyimEXV9lChoBmgJaA9DCExQw7ew6EJAlIaUUpRoFUvAaBZHQJMofgNwzch1fZQoaAZoCWgPQwi29j5Vhf5tQJSGlFKUaBVNTwFoFkdAkymKkRBeHHV9lChoBmgJaA9DCHPzjege4m9AlIaUUpRoFU0jAWgWR0CTKjCxu89PdX2UKGgGaAloD0MI1y/YDdurb0CUhpRSlGgVTVUBaBZHQJMqsZ4wAVB1fZQoaAZoCWgPQwhMa9PYXrdrQJSGlFKUaBVNOwFoFkdAky0XYpUgjnV9lChoBmgJaA9DCBmRKLQs3nFAlIaUUpRoFU0cAWgWR0CTMzzposZpdX2UKGgGaAloD0MIEw1S8JSEbECUhpRSlGgVTTgBaBZHQJM1uamXPZ91fZQoaAZoCWgPQwhjYB3HD71wQJSGlFKUaBVNKAFoFkdAkzjEFr2xp3V9lChoBmgJaA9DCDwTmiRWtHFAlIaUUpRoFU0eAmgWR0CTOMo24uscdX2UKGgGaAloD0MImUf+YOD1W0CUhpRSlGgVTegDaBZHQJM5Y8eS0Sh1fZQoaAZoCWgPQwg8TzxnC85qQJSGlFKUaBVNRwFoFkdAkznZ0CA+ZHV9lChoBmgJaA9DCLEVNC0xUGtAlIaUUpRoFU07AWgWR0CTOwMqz7djdX2UKGgGaAloD0MI71TAPU/WbUCUhpRSlGgVTTQBaBZHQJM7WicoYvZ1fZQoaAZoCWgPQwjsbMg/MygYQJSGlFKUaBVL/WgWR0CTO57BwdbQdX2UKGgGaAloD0MIJm2q7pEtYMCUhpRSlGgVTU4DaBZHQJM7nfl6qsF1fZQoaAZoCWgPQwj26053HoxwQJSGlFKUaBVNtAFoFkdAkzwmpVCHAXV9lChoBmgJaA9DCOviNhoAgXBAlIaUUpRoFU1YAWgWR0CTPWzWPLgXdX2UKGgGaAloD0MIo7H2d7ZaVkCUhpRSlGgVTegDaBZHQJNA0/gR9PV1fZQoaAZoCWgPQwiWsaGb/QVDQJSGlFKUaBVLxmgWR0CTQ3E/0NBodX2UKGgGaAloD0MIMSb9vVSjcUCUhpRSlGgVTScBaBZHQJNIA/Y8Md91fZQoaAZoCWgPQwiNtiqJ7OMrwJSGlFKUaBVNCgFoFkdAk0j9+G47R3V9lChoBmgJaA9DCFyRmKDGyXFAlIaUUpRoFU0wAWgWR0CTSTNnXd0rdX2UKGgGaAloD0MIYtnMIak1cECUhpRSlGgVTZQBaBZHQJNJRUPxx1h1fZQoaAZoCWgPQwgQXOUJRD9wQJSGlFKUaBVNTAFoFkdAk0oyLAHminV9lChoBmgJaA9DCO3yrQ/ri25AlIaUUpRoFU06AWgWR0CTS1wG4ZuRdX2UKGgGaAloD0MIaJPDJx1fcUCUhpRSlGgVTVcBaBZHQJNNbrZ8KHB1fZQoaAZoCWgPQwjEeM2rOsleQJSGlFKUaBVN6ANoFkdAk0/Qi3XqaHV9lChoBmgJaA9DCNvEyf0O9m1AlIaUUpRoFU2XAWgWR0CTUVxvegtfdX2UKGgGaAloD0MIDLJl+XrJckCUhpRSlGgVTaIBaBZHQJNRXfl6qsF1fZQoaAZoCWgPQwgGSDSBIrNaQJSGlFKUaBVN6ANoFkdAk1LVxbSql3V9lChoBmgJaA9DCN3QlJ0+JHFAlIaUUpRoFU2eAWgWR0CTUxXUpd8idX2UKGgGaAloD0MI0SNGzy3LcUCUhpRSlGgVTRUBaBZHQJNXkcABDG91fZQoaAZoCWgPQwhcy2Q4nj9VQJSGlFKUaBVN6ANoFkdAk1pdqxkd3nV9lChoBmgJaA9DCHr+tFEd2nBAlIaUUpRoFU0pAWgWR0CTWwS8J2MbdX2UKGgGaAloD0MI5XtGIjRJcECUhpRSlGgVTUABaBZHQJNbIl8gIQh1fZQoaAZoCWgPQwjtDb4wGfpuQJSGlFKUaBVNcAFoFkdAk1u5wCKaX3V9lChoBmgJaA9DCC0I5X0cDm9AlIaUUpRoFU1wAWgWR0CTXLNzr/sFdX2UKGgGaAloD0MIqkca3Ja3cECUhpRSlGgVTX0BaBZHQJNdGoIfKZF1fZQoaAZoCWgPQwjytWeWBLRkQJSGlFKUaBVNPgJoFkdAk1+EpEx7A3V9lChoBmgJaA9DCIkmUMSiXm5AlIaUUpRoFU00AWgWR0CTYXlTFVDKdX2UKGgGaAloD0MIaLEUyZcAc0CUhpRSlGgVTTgBaBZHQJNht1loUSJ1fZQoaAZoCWgPQwjOb5hoEMZuQJSGlFKUaBVNHgFoFkdAk2IFBIFvAHV9lChoBmgJaA9DCDPC24NQWHBAlIaUUpRoFU13AWgWR0CTY0DcuanadX2UKGgGaAloD0MInZ/iOPCfbkCUhpRSlGgVTT4BaBZHQJNjsob4rSV1fZQoaAZoCWgPQwjZ0M3+wMZqQJSGlFKUaBVN5AFoFkdAk2Yms/6frnV9lChoBmgJaA9DCNI6qpoguiZAlIaUUpRoFUvzaBZHQJNm6FmFrVR1fZQoaAZoCWgPQwh+ObNdoaliQJSGlFKUaBVN6ANoFkdAk2nQ/1QIlnV9lChoBmgJaA9DCHtP5bRnaHBAlIaUUpRoFU0pAWgWR0CTa1sZ5zHTdX2UKGgGaAloD0MInyKHiFsWckCUhpRSlGgVTWwBaBZHQJNspxdY4hl1fZQoaAZoCWgPQwhGPxpOGcVtQJSGlFKUaBVNYAFoFkdAk2y2nn+yaHV9lChoBmgJaA9DCKzj+KFSdW1AlIaUUpRoFU1IAWgWR0CTbYyksSTRdX2UKGgGaAloD0MI8gwa+ifpcECUhpRSlGgVTXIBaBZHQJNuQ1Nxlxx1fZQoaAZoCWgPQwglCFdAIbxqQJSGlFKUaBVNvwFoFkdAk26Cc0+C9XV9lChoBmgJaA9DCIJxcOmYgWtAlIaUUpRoFU0fAWgWR0CTb9Ssr/bTdX2UKGgGaAloD0MIMC/APnrEcECUhpRSlGgVTU4BaBZHQJNwEIMSbph1fZQoaAZoCWgPQwivmBHenk9xQJSGlFKUaBVL/mgWR0CTcD2M85jpdX2UKGgGaAloD0MIPSmTGlqUbUCUhpRSlGgVTT0BaBZHQJNw3lp48lp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f005486c56844930a2390012d663f32c19cf89d20376de299f91ee44c060034
3
+ size 254740
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 189.2305611272838, "std_reward": 88.15664298291694, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T09:55:33.853277"}