|
import numpy as np |
|
|
|
|
|
class SmilesTokenizer(object): |
|
def __init__(self): |
|
atoms = [ |
|
'Al', 'As', 'B', 'Br', 'C', 'Cl', 'F', 'H', 'I', 'K', 'Li', 'N', |
|
'Na', 'O', 'P', 'S', 'Se', 'Si', 'Te' |
|
] |
|
special = [ |
|
'(', ')', '[', ']', '=', '#', '%', '0', '1', '2', '3', '4', '5', |
|
'6', '7', '8', '9', '+', '-', 'se', 'te', 'c', 'n', 'o', 's' |
|
] |
|
padding = ['G', 'A', 'E'] |
|
|
|
self.table = sorted(atoms, key=len, reverse=True) + special + padding |
|
table_len = len(self.table) |
|
|
|
self.table_2_chars = list(filter(lambda x: len(x) == 2, self.table)) |
|
self.table_1_chars = list(filter(lambda x: len(x) == 1, self.table)) |
|
|
|
self.one_hot_dict = {} |
|
for i, symbol in enumerate(self.table): |
|
vec = np.zeros(table_len, dtype=np.float32) |
|
vec[i] = 1 |
|
self.one_hot_dict[symbol] = vec |
|
|
|
def tokenize(self, smiles): |
|
smiles = smiles + ' ' |
|
N = len(smiles) |
|
token = [] |
|
i = 0 |
|
while (i < N): |
|
c1 = smiles[i] |
|
c2 = smiles[i:i + 2] |
|
|
|
if c2 in self.table_2_chars: |
|
token.append(c2) |
|
i += 2 |
|
continue |
|
|
|
if c1 in self.table_1_chars: |
|
token.append(c1) |
|
i += 1 |
|
continue |
|
|
|
i += 1 |
|
|
|
return token |
|
|
|
def one_hot_encode(self, tokenized_smiles): |
|
result = np.array( |
|
[self.one_hot_dict[symbol] for symbol in tokenized_smiles], |
|
dtype=np.float32) |
|
result = result.reshape(1, result.shape[0], result.shape[1]) |
|
return result |
|
|