File size: 9,243 Bytes
b3c2eb7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"df = pd.read_csv('bace_probab.csv')"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(array([ 1., 1., 3., 3., 3., 0., 3., 3., 3., 5., 8., 7., 7.,\n",
" 3., 11., 27., 3., 7., 1., 1.]),\n",
" array([0.3483777 , 0.37580438, 0.40323105, 0.43065773, 0.4580844 ,\n",
" 0.48551108, 0.51293775, 0.54036443, 0.5677911 , 0.59521778,\n",
" 0.62264445, 0.65007113, 0.6774978 , 0.70492448, 0.73235115,\n",
" 0.75977783, 0.7872045 , 0.81463118, 0.84205785, 0.86948453,\n",
" 0.8969112 ]),\n",
" <BarContainer object of 20 artists>)"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEICAYAAABGaK+TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAUfklEQVR4nO3de7RkZX3m8e8jyESFCNgNIgJtUBSCEZ2WSFxGvEXEQcUxRjRKHBPCKEaXLhOGFUdcZhJcJpoxJjoYGTCCTiKoGDCRQBA1BqfBlktaAkLLrYFGRC4hMsBv/tj7YHE4p6tOVZ1z+u3+ftaqdar29fdWVT/11rt37U5VIUlqzyOWuwBJ0ngMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngW7gkleTJY667PsmL55n3vCRXzLVskuOS/OV4FY9V555J7kqyzZS294kk7+3vH5zk+mlst9/eQ563pZLkqUm+k+TOJL+z1PvX4jDAN0N9GN7Th9LNSf53ku2Xu65BVfX1qnrqPPP+sKp+EyDJqv5DZNtx9pPkN5Lc3z8XdyW5pn8+9hnY37VVtX1V3T/Ctr4xbJ9VdXRVfWCceufY50M+QDf1vC2y3wXOr6odquqjs2cmOT/Jv/fP8Y+TXJDk6XMs9xt9m147x7x9kvxNklv7bVyS5F1Jthl4H9w16/Zri9TerYIBvvk6rKq2B54FPBv4/dkLjBuKDfpW/1w8FngxcA9wUZL9p72jafXiN0N7AZcPWeaY/nl+HHA+8FdzLHMkcFv/90FJ9gYuBK4Dnl5VjwV+FVgN7DCw6I79h+3M7f+M0xh1DPDNXFXdAHwF2B8e7NG9LcmVwJX9tN9KclWS25KcmeQJszZzaJKr+57Rh5I8ol9v7yTnJflhP+/UJDvOWvfZSf4lyY/6nu/P9OvOO7SQ5Pgkn+kfXtD/vb3vcT2/r/PpA8vv0n/jWDnkubi/qr5fVW8FvgYc36//kF5+30u8uh8uuCbJG5LsC3wCOKiv4/Z+2ZOTfDzJ2UnuBl7QT/uDWW06rn+O1id5w8D085P85sDjB3v5SWba/t2Z3ubs5y3Jvv02bk9yeZJXDMw7OcmfJzmrb8uFfVDOKckr+m3c3m9z3376ecALgI/1dewz3zb65/k+4HPAfrO2vxfwfOAo4KVJdh2Y/X7gn6rqXVW1od/OFVX1+qq6fVP70/gM8M1ckj2AQ4HvDEx+FfCLwH5JXgj8EfBaYDfgB3T/+AYdTtcTehbwSuC/zGy+X/cJwL7AHvShOOANwEuBvYF9mOObwBC/3P+d6Xl9ra/v1weWOQL4h6rauIDtngE8b/bEJI8BPgq8rKp2AH4JWFtV64Cj6XvzVbXjwGqvB/4HXU9xriGWxwMrgN3pep4nJhk6DFJVM21/xly9zSSPBL4MfBXYBXg7cOqsbR9BF447AVf1dT5MH8qfBd4JrATOBr6cZLuqeiHwdfoedlX966bqTrId3ev+z7NmvQlYU1WnA+v6ZWa8GPj8prar6TPAN19f7HuJ36Drbf7hwLw/qqrbquoeun9EJ1XVxVX1E+C/0fUyVw0s/8F++WuBP6ULBarqqqo6p6p+0ofnh+l6WIM+VlXXVdVtdOFxxBTadgrw+plvAsAbmfvr+qbcCOw8z7wHgP2TPKqqNlTVsKGDL1XVN6vqgar693mWeW//PH0NOIvuA3NSzwG2B06oqnur6jzgb3noc3xGVX277xWfChwwz7Z+DTirfz3/H/DHwKPoPsBG9dH+PXcXcAzdB8egNwGn9fdP46HDKI8DNoywj1v7bwgzt30XUJ9mMcA3X6+qqh2raq+qemsf1jOuG7j/BLpeNwBVdRfwQ7re4lzL/6BfZ2bo4nNJbkhyB/AZup4mw9adRFVdCNwNPD/J04AnA2cucDO7043Fzt723XRhdjSwoR9+eNqQbV03ZP6P+u3OmMrz0G/juqp6YNa2B1+7mwbu/xtd4M+3rcH3wQN07dp9nuXn8jv9N5OfAf4T8PkkvwCQ5LnAk/jpt7vTgKcnOaB//EO6b4DDrOjf1zO3dQuoT7MY4G0avITkjXQHqIAHhxAeB9wwsMweA/f37NeBbvikgF+oqp+lG9bIrH3Nt+44tQ46pd/fG4HPb6LnO5/D6YYFHr7Dqr+vqpfQBcr3gE8OqWXYJTl36p/XGYPPw93AowfmPX7ItgbdCOwx8E1kZts3zLP8sG0Nvg9C99oteFv9N5Gv0w3Z/Eo/+Ui698baJDfRHbCErlcO8A/Afx6jbk3AAG/facCbkxyQ5D/QDbVcWFXrB5Z5T5Kd+vH0dwAzY7E70H1dvj3J7sB75tj+25I8McnOwHED645qI92Qxs/Nmv5XdCH868CnR9lQutPRnpTkz4CDefhXfJLs2h/MewzwE7r2zZxeeDPwxH6Md6Hen2S7JM+j653+TT99LfDqJI9Od7rgW2atdzMPb/uMmW8iv5vkkUkOBg7j4ccwRvHXwMuTvKgfW383Xfv/aYxtkeQguoOYl/cHrl9Ld/DygIHb24E39AeP3wf8UrqD5I/vt/HkJJ/Jww+Ma0oM8MZV1bnAe4HT6cYg9wZeN2uxLwEX0YXNWcCn+unvpzuw+eN++hlz7OI0uoNsV/e3P5hjmU3V9290Y+ff7Mc8n9NPvx64mK73O2dPesBBSe4C7qA7ve1ngWdX1aVzLPsIuvC6kW6I5fnAW/t559GdSndTklsX0IybgB/12zwVOLqqvtfP+whwL11Qn9LPH3Q8cErf9oeMm1fVvcArgJcBtwJ/AbxpYNsjq6or6D4M/6zf1mF0p6Leu4DNzJylchfdB+zvV9VX6A6a3wN8uqpumrnRvY+2AQ6pqu8DBwGr6EL/x3TvyTXAnQP7mDkbaeb2roW2VT8V/0MHLZckJwE3VtVCz2yRBGwtPwTRZqY/S+bVwDOXuRSpWQ6haMkl+QBwGfChqrpmueuRWuUQiiQ1yh64JDVqScfAV6xYUatWrVrKXUpS8y666KJbq+ph1wpa0gBftWoVa9asWcpdSlLzkvxgrukOoUhSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqO8nKykBVt17FkTrb/+hJdPqZKtmz1wSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUUMDPMkeSf4xyboklyd5Rz/9+CQ3JFnb3w5d/HIlSTNGuZjVfcC7q+riJDsAFyU5p5/3kar648UrT5I0n6EBXlUbgA39/TuTrAN2X+zCJEmbtqAx8CSrgGcCF/aTjklySZKTkuw0zzpHJVmTZM3GjRsnq1aS9KCRAzzJ9sDpwDur6g7g48DewAF0PfQ/mWu9qjqxqlZX1eqVK1dOXrEkCRgxwJM8ki68T62qMwCq6uaqur+qHgA+CRy4eGVKkmYb5SyUAJ8C1lXVhwem7zaw2OHAZdMvT5I0n1HOQnku8Ebg0iRr+2nHAUckOQAoYD3w24tQnyRpHqOchfINIHPMOnv65UiSRuUvMSWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGjU0wJPskeQfk6xLcnmSd/TTd05yTpIr+787LX65kqQZo/TA7wPeXVX7As8B3pZkP+BY4Nyqegpwbv9YkrREhgZ4VW2oqov7+3cC64DdgVcCp/SLnQK8apFqlCTNYUFj4ElWAc8ELgR2raoN0IU8sMs86xyVZE2SNRs3bpywXEnSjJEDPMn2wOnAO6vqjlHXq6oTq2p1Va1euXLlODVKkuYwUoAneSRdeJ9aVWf0k29Osls/fzfglsUpUZI0l1HOQgnwKWBdVX14YNaZwJH9/SOBL02/PEnSfLYdYZnnAm8ELk2ytp92HHAC8NdJ3gJcC/zqolQoSZrT0ACvqm8AmWf2i6ZbjiRpVP4SU5IaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDVqaIAnOSnJLUkuG5h2fJIbkqztb4cubpmSpNlG6YGfDBwyx/SPVNUB/e3s6ZYlSRpmaIBX1QXAbUtQiyRpASYZAz8mySX9EMtO8y2U5Kgka5Ks2bhx4wS7kyQNGjfAPw7sDRwAbAD+ZL4Fq+rEqlpdVatXrlw55u4kSbONFeBVdXNV3V9VDwCfBA6cblmSpGHGCvAkuw08PBy4bL5lJUmLY9thCyT5LHAwsCLJ9cD7gIOTHAAUsB747cUrUZI0l6EBXlVHzDH5U4tQiyRpAfwlpiQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVHbLncBkpbHqmPPWu4SNCF74JLUKANckhplgEtSowxwSWrU0ABPclKSW5JcNjBt5yTnJLmy/7vT4pYpSZptlB74ycAhs6YdC5xbVU8Bzu0fS5KW0NAAr6oLgNtmTX4lcEp//xTgVdMtS5I0zLhj4LtW1QaA/u8u8y2Y5Kgka5Ks2bhx45i7kyTNtugHMavqxKpaXVWrV65cudi7k6StxrgBfnOS3QD6v7dMryRJ0ijGDfAzgSP7+0cCX5pOOZKkUY1yGuFngW8BT01yfZK3ACcAL0lyJfCS/rEkaQkNvZhVVR0xz6wXTbkWSdIC+EtMSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElq1NBfYkpbg1XHnjXR+utPePmUKpFGZw9ckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGeR64NAWTnkc+rq3x/PNJnust7fmyBy5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDVqomuhJFkP3AncD9xXVaunUZQkabhpXMzqBVV16xS2I0laAIdQJKlRk/bAC/hqkgL+V1WdOHuBJEcBRwHsueeeE+5Omt9yXdJVWi6T9sCfW1XPAl4GvC3JL89eoKpOrKrVVbV65cqVE+5OkjRjogCvqhv7v7cAXwAOnEZRkqThxg7wJI9JssPMfeBXgMumVZgkadMmGQPfFfhCkpntnFZVfzeVqiRJQ40d4FV1NfCMKdYiSVoATyOUpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1Khp/I88W7wWrzO9/oSXj71ui+3dWrX6WrVa9+bGHrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJalQzl5P18pOSJrWcOTLJJZ7nYw9ckhplgEtSowxwSWqUAS5JjZoowJMckuSKJFclOXZaRUmShhs7wJNsA/w58DJgP+CIJPtNqzBJ0qZN0gM/ELiqqq6uqnuBzwGvnE5ZkqRhJjkPfHfguoHH1wO/OHuhJEcBR/UP70pyxQT7XGorgFuXu4hx5INDF2m2bSPaktu3JbcNttD29f8mx23bXnNNnCTAM8e0etiEqhOBEyfYz7JJsqaqVi93HYthS24bbNnt25LbBlt2+6bdtkmGUK4H9hh4/ETgxsnKkSSNapIA/7/AU5I8Kcl2wOuAM6dTliRpmLGHUKrqviTHAH8PbAOcVFWXT62yzUOTQz8j2pLbBlt2+7bktsGW3b6pti1VDxu2liQ1wF9iSlKjDHBJatRWH+CjXg4gybOT3J/kNUtZ36SGtS/JwUl+nGRtf/vvy1HnOEZ57fr2rU1yeZKvLXWNkxjhtXvPwOt2Wf/+3Hk5al2oEdr22CRfTvLd/rV783LUOa4R2rdTki8kuSTJt5PsP9aOqmqrvdEdfP0+8HPAdsB3gf3mWe484GzgNctd9zTbBxwM/O1y17pIbdsR+Bdgz/7xLstd9zTbN2v5w4DzlrvuKb52xwEf7O+vBG4Dtlvu2qfYvg8B7+vvPw04d5x9be098FEvB/B24HTglqUsbgq25MsdjNK21wNnVNW1AFXV0uu30NfuCOCzS1LZ5EZpWwE7JAmwPV2A37e0ZY5tlPbtB5wLUFXfA1Yl2XWhO9raA3yuywHsPrhAkt2Bw4FPLGFd0zK0fb2D+q+qX0ny80tT2sRGads+wE5Jzk9yUZI3LVl1kxv1tSPJo4FD6DoZLRilbR8D9qX7ceClwDuq6oGlKW9io7Tvu8CrAZIcSPdT+ScudEfN/J+Yi2SUywH8KfB7VXV/1xloyijtuxjYq6ruSnIo8EXgKYtd2BSM0rZtgf8IvAh4FPCtJP9cVf+62MVNwUiXqugdBnyzqm5bxHqmaZS2vRRYC7wQ2Bs4J8nXq+qORa5tGkZp3wnA/0yylu4D6juM8Q1jaw/wUS4HsBr4XB/eK4BDk9xXVV9ckgonM7R9g/8gqursJH+RZEVVbe4XExrltbseuLWq7gbuTnIB8AyghQBfyKUqXkc7wycwWtveDJxQ3SDxVUmuoRsr/vbSlDiRUf/dvRmgHya6pr8tzHIP+C/zwYZtgauBJ/HTgw0/v4nlT6atg5hD2wc8np/+oOtA4NqZx5vzbcS27Us3zrgt8GjgMmD/5a59Wu3rl3ss3fjwY5a75im/dh8Hju/v7wrcAKxY7tqn2L4d6Q/KAr8FfHqcfW3VPfCa53IASY7u57c47v2gEdv3GuC/JrkPuAd4XfXvqs3ZKG2rqnVJ/g64BHgA+Muqumz5qh7dAt6bhwNfre5bRhNGbNsHgJOTXEo3JPF7tfl/KwRGbt++wKeT3E93ptRbxtmXP6WXpEZt7WehSFKzDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUqP8PddtiM9ObQa0AAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"plt.title('Probability Distribution of BACE')\n",
"plt.hist(df.Probability, bins = 20)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "myenv",
"language": "python",
"name": "myenv"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|