|
""" |
|
Full definition of a GPT Language Model, all of it in this single file. |
|
|
|
References: |
|
1) the official GPT-2 TensorFlow implementation released by OpenAI: |
|
https://github.com/openai/gpt-2/blob/master/src/model.py |
|
2) huggingface/transformers PyTorch implementation: |
|
https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py |
|
""" |
|
|
|
import math |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
|
|
from mingpt.utils import CfgNode as CN |
|
|
|
|
|
|
|
class NewGELU(nn.Module): |
|
""" |
|
Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT). |
|
Reference: Gaussian Error Linear Units (GELU) paper: https://arxiv.org/abs/1606.08415 |
|
""" |
|
def forward(self, x): |
|
return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0)))) |
|
|
|
class CausalSelfAttention(nn.Module): |
|
""" |
|
A vanilla multi-head masked self-attention layer with a projection at the end. |
|
It is possible to use torch.nn.MultiheadAttention here but I am including an |
|
explicit implementation here to show that there is nothing too scary here. |
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
assert config.n_embd % config.n_head == 0 |
|
|
|
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) |
|
|
|
self.c_proj = nn.Linear(config.n_embd, config.n_embd) |
|
|
|
self.attn_dropout = nn.Dropout(config.attn_pdrop) |
|
self.resid_dropout = nn.Dropout(config.resid_pdrop) |
|
|
|
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)) |
|
.view(1, 1, config.block_size, config.block_size)) |
|
self.n_head = config.n_head |
|
self.n_embd = config.n_embd |
|
|
|
def forward(self, x): |
|
B, T, C = x.size() |
|
|
|
|
|
q, k ,v = self.c_attn(x).split(self.n_embd, dim=2) |
|
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
|
|
|
|
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) |
|
att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf')) |
|
att = F.softmax(att, dim=-1) |
|
att = self.attn_dropout(att) |
|
y = att @ v |
|
y = y.transpose(1, 2).contiguous().view(B, T, C) |
|
|
|
|
|
y = self.resid_dropout(self.c_proj(y)) |
|
return y |
|
|
|
class Block(nn.Module): |
|
""" an unassuming Transformer block """ |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.ln_1 = nn.LayerNorm(config.n_embd) |
|
self.attn = CausalSelfAttention(config) |
|
self.ln_2 = nn.LayerNorm(config.n_embd) |
|
self.mlp = nn.ModuleDict(dict( |
|
c_fc = nn.Linear(config.n_embd, 4 * config.n_embd), |
|
c_proj = nn.Linear(4 * config.n_embd, config.n_embd), |
|
act = NewGELU(), |
|
dropout = nn.Dropout(config.resid_pdrop), |
|
)) |
|
m = self.mlp |
|
self.mlpf = lambda x: m.dropout(m.c_proj(m.act(m.c_fc(x)))) |
|
|
|
def forward(self, x): |
|
x = x + self.attn(self.ln_1(x)) |
|
x = x + self.mlpf(self.ln_2(x)) |
|
return x |
|
|
|
class GPT(nn.Module): |
|
""" GPT Language Model """ |
|
|
|
@staticmethod |
|
def get_default_config(): |
|
C = CN() |
|
|
|
C.model_type = 'gpt' |
|
C.n_layer = None |
|
C.n_head = None |
|
C.n_embd = None |
|
|
|
C.vocab_size = None |
|
C.block_size = None |
|
|
|
C.embd_pdrop = 0.1 |
|
C.resid_pdrop = 0.1 |
|
C.attn_pdrop = 0.1 |
|
return C |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
assert config.vocab_size is not None |
|
assert config.block_size is not None |
|
self.block_size = config.block_size |
|
|
|
type_given = config.model_type is not None |
|
params_given = all([config.n_layer is not None, config.n_head is not None, config.n_embd is not None]) |
|
assert type_given ^ params_given |
|
if type_given: |
|
|
|
config.merge_from_dict({ |
|
|
|
|
|
'openai-gpt': dict(n_layer=12, n_head=12, n_embd=768), |
|
|
|
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), |
|
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), |
|
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), |
|
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), |
|
|
|
'gopher-44m': dict(n_layer=8, n_head=16, n_embd=512), |
|
|
|
|
|
'gpt-mini': dict(n_layer=6, n_head=6, n_embd=192), |
|
'gpt-micro': dict(n_layer=4, n_head=4, n_embd=128), |
|
'gpt-nano': dict(n_layer=3, n_head=3, n_embd=48), |
|
}[config.model_type]) |
|
|
|
self.transformer = nn.ModuleDict(dict( |
|
wte = nn.Embedding(config.vocab_size, config.n_embd), |
|
wpe = nn.Embedding(config.block_size, config.n_embd), |
|
drop = nn.Dropout(config.embd_pdrop), |
|
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), |
|
ln_f = nn.LayerNorm(config.n_embd), |
|
)) |
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) |
|
|
|
|
|
self.apply(self._init_weights) |
|
for pn, p in self.named_parameters(): |
|
if pn.endswith('c_proj.weight'): |
|
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer)) |
|
|
|
|
|
n_params = sum(p.numel() for p in self.transformer.parameters()) |
|
print("number of parameters: %.2fM" % (n_params/1e6,)) |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, nn.Linear): |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) |
|
if module.bias is not None: |
|
torch.nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Embedding): |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) |
|
elif isinstance(module, nn.LayerNorm): |
|
torch.nn.init.zeros_(module.bias) |
|
torch.nn.init.ones_(module.weight) |
|
|
|
@classmethod |
|
def from_pretrained(cls, model_type): |
|
""" |
|
Initialize a pretrained GPT model by copying over the weights |
|
from a huggingface/transformers checkpoint. |
|
""" |
|
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'} |
|
from transformers import GPT2LMHeadModel |
|
|
|
|
|
config = cls.get_default_config() |
|
config.model_type = model_type |
|
config.vocab_size = 50257 |
|
config.block_size = 1024 |
|
model = GPT(config) |
|
sd = model.state_dict() |
|
|
|
|
|
model_hf = GPT2LMHeadModel.from_pretrained(model_type) |
|
sd_hf = model_hf.state_dict() |
|
|
|
|
|
keys = [k for k in sd_hf if not k.endswith('attn.masked_bias')] |
|
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight'] |
|
|
|
|
|
assert len(keys) == len(sd) |
|
for k in keys: |
|
if any(k.endswith(w) for w in transposed): |
|
|
|
assert sd_hf[k].shape[::-1] == sd[k].shape |
|
with torch.no_grad(): |
|
sd[k].copy_(sd_hf[k].t()) |
|
else: |
|
|
|
assert sd_hf[k].shape == sd[k].shape |
|
with torch.no_grad(): |
|
sd[k].copy_(sd_hf[k]) |
|
|
|
return model |
|
|
|
def configure_optimizers(self, train_config): |
|
""" |
|
This long function is unfortunately doing something very simple and is being very defensive: |
|
We are separating out all parameters of the model into two buckets: those that will experience |
|
weight decay for regularization and those that won't (biases, and layernorm/embedding weights). |
|
We are then returning the PyTorch optimizer object. |
|
""" |
|
|
|
|
|
decay = set() |
|
no_decay = set() |
|
whitelist_weight_modules = (torch.nn.Linear, ) |
|
blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding) |
|
for mn, m in self.named_modules(): |
|
for pn, p in m.named_parameters(): |
|
fpn = '%s.%s' % (mn, pn) if mn else pn |
|
|
|
|
|
|
|
if pn.endswith('bias'): |
|
|
|
no_decay.add(fpn) |
|
elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules): |
|
|
|
decay.add(fpn) |
|
elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules): |
|
|
|
no_decay.add(fpn) |
|
|
|
|
|
param_dict = {pn: p for pn, p in self.named_parameters()} |
|
inter_params = decay & no_decay |
|
union_params = decay | no_decay |
|
assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), ) |
|
assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \ |
|
% (str(param_dict.keys() - union_params), ) |
|
|
|
|
|
optim_groups = [ |
|
{"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": train_config.weight_decay}, |
|
{"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0}, |
|
] |
|
optimizer = torch.optim.AdamW(optim_groups, lr=train_config.learning_rate, betas=train_config.betas) |
|
return optimizer |
|
|
|
def forward(self, idx, targets=None): |
|
device = idx.device |
|
b, t = idx.size() |
|
assert t <= self.block_size, f"Cannot forward sequence of length {t}, block size is only {self.block_size}" |
|
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) |
|
|
|
|
|
tok_emb = self.transformer.wte(idx) |
|
pos_emb = self.transformer.wpe(pos) |
|
x = self.transformer.drop(tok_emb + pos_emb) |
|
for block in self.transformer.h: |
|
x = block(x) |
|
x = self.transformer.ln_f(x) |
|
logits = self.lm_head(x) |
|
|
|
|
|
loss = None |
|
if targets is not None: |
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) |
|
|
|
return logits, loss |
|
|
|
@torch.no_grad() |
|
def generate(self, idx, max_new_tokens, temperature=1.0, do_sample=False, top_k=None): |
|
""" |
|
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete |
|
the sequence max_new_tokens times, feeding the predictions back into the model each time. |
|
Most likely you'll want to make sure to be in model.eval() mode of operation for this. |
|
""" |
|
for _ in range(max_new_tokens): |
|
|
|
idx_cond = idx if idx.size(1) <= self.block_size else idx[:, -self.block_size:] |
|
|
|
logits, _ = self(idx_cond) |
|
|
|
logits = logits[:, -1, :] / temperature |
|
|
|
if top_k is not None: |
|
v, _ = torch.topk(logits, top_k) |
|
logits[logits < v[:, [-1]]] = -float('Inf') |
|
|
|
probs = F.softmax(logits, dim=-1) |
|
|
|
if do_sample: |
|
idx_next = torch.multinomial(probs, num_samples=1) |
|
else: |
|
_, idx_next = torch.topk(probs, k=1, dim=-1) |
|
|
|
idx = torch.cat((idx, idx_next), dim=1) |
|
|
|
return idx |
|
|