File size: 3,466 Bytes
1ebe9cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
"""
Simple training loop; Boilerplate that could apply to any arbitrary neural network,
so nothing in this file really has anything to do with GPT specifically.
"""
import time
from collections import defaultdict
import torch
from torch.utils.data.dataloader import DataLoader
from mingpt.utils import CfgNode as CN
class Trainer:
@staticmethod
def get_default_config():
C = CN()
# device to train on
C.device = 'auto'
# dataloder parameters
C.num_workers = 4
# optimizer parameters
C.max_iters = None
C.batch_size = 64
C.learning_rate = 3e-4
C.betas = (0.9, 0.95)
C.weight_decay = 0.1 # only applied on matmul weights
C.grad_norm_clip = 1.0
return C
def __init__(self, config, model, train_dataset):
self.config = config
self.model = model
self.optimizer = None
self.train_dataset = train_dataset
self.callbacks = defaultdict(list)
# determine the device we'll train on
if config.device == 'auto':
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
else:
self.device = config.device
self.model = self.model.to(self.device)
print("running on device", self.device)
# variables that will be assigned to trainer class later for logging and etc
self.iter_num = 0
self.iter_time = 0.0
self.iter_dt = 0.0
def add_callback(self, onevent: str, callback):
self.callbacks[onevent].append(callback)
def set_callback(self, onevent: str, callback):
self.callbacks[onevent] = [callback]
def trigger_callbacks(self, onevent: str):
for callback in self.callbacks.get(onevent, []):
callback(self)
def run(self):
model, config = self.model, self.config
# setup the optimizer
self.optimizer = model.configure_optimizers(config)
# setup the dataloader
train_loader = DataLoader(
self.train_dataset,
sampler=torch.utils.data.RandomSampler(self.train_dataset, replacement=True, num_samples=int(1e10)),
shuffle=False,
pin_memory=True,
batch_size=config.batch_size,
num_workers=config.num_workers,
)
model.train()
self.iter_num = 0
self.iter_time = time.time()
data_iter = iter(train_loader)
while True:
# fetch the next batch (x, y) and re-init iterator if needed
try:
batch = next(data_iter)
except StopIteration:
data_iter = iter(train_loader)
batch = next(data_iter)
batch = [t.to(self.device) for t in batch]
x, y = batch
# forward the model
logits, self.loss = model(x, y)
# backprop and update the parameters
model.zero_grad(set_to_none=True)
self.loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), config.grad_norm_clip)
self.optimizer.step()
self.trigger_callbacks('on_batch_end')
self.iter_num += 1
tnow = time.time()
self.iter_dt = tnow - self.iter_time
self.iter_time = tnow
# termination conditions
if config.max_iters is not None and self.iter_num >= config.max_iters:
break
|