File size: 6,021 Bytes
dc7407d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import torch
from torch import nn
from utils.datastruct import NetData
from models.feedforward import LinLayers


class CNN3D_Mike(nn.Module):
    def __init__(self, t_dim=30, img_x=256 , img_y=342, drop_p=0, fc_hidden1=256, fc_hidden2=256):
        super(CNN3D_Mike, self).__init__()        # set video dimension
        self.t_dim = t_dim
        self.img_x = img_x
        self.img_y = img_y
        # fully connected layer hidden nodes
        self.fc_hidden1, self.fc_hidden2 = fc_hidden1, fc_hidden2
        self.drop_p = drop_p
        #self.num_classes = num_classes
        self.ch1, self.ch2 = 32, 48
        self.k1, self.k2 = (5, 5, 5), (3, 3, 3)  # 3d kernel size
        self.s1, self.s2 = (2, 2, 2), (2, 2, 2)  # 3d strides
        self.pd1, self.pd2 = (0, 0, 0), (0, 0, 0)  # 3d padding        # compute conv1 & conv2 output shape
        self.conv1_outshape = conv3D_output_size((self.t_dim, self.img_x, self.img_y), self.pd1, self.k1, self.s1)
        self.conv2_outshape = conv3D_output_size(self.conv1_outshape, self.pd2, self.k2, self.s2)        
        self.conv1 = nn.Conv3d(in_channels=1, out_channels=self.ch1, kernel_size=self.k1, stride=self.s1,
                               padding=self.pd1)
        self.bn1 = nn.BatchNorm3d(self.ch1)
        self.conv2 = nn.Conv3d(in_channels=self.ch1, out_channels=self.ch2, kernel_size=self.k2, stride=self.s2,
                               padding=self.pd2)
        self.bn2 = nn.BatchNorm3d(self.ch2)
        self.relu = nn.ReLU(inplace=True)
        self.drop = nn.Dropout3d(self.drop_p)
        self.pool = nn.MaxPool3d(2)
        self.fc1 = nn.Linear(self.ch2*self.conv2_outshape[0]*self.conv2_outshape[1]*self.conv2_outshape[2],
                             self.fc_hidden1)  # fully connected hidden layer
        self.fc2 = nn.Linear(self.fc_hidden1, self.fc_hidden2)
        self.fc3 = nn.Linear(self.fc_hidden2,1)  # fully connected layer, output = multi-classes 
        
        
    def forward(self, x_3d):
        # Conv 1
        x = self.conv1(x_3d)
       
        x = self.bn1(x)
        x = self.relu(x)
        x = self.drop(x)
        # Conv 2
        x = self.conv2(x)
        x = self.bn2(x)
        x = self.relu(x)
        x = self.drop(x)
        # FC 1 and 2
        x = x.view(x.size(0), -1)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        
        #x = F.relu(self.fc3(x))
        #x = F.relu(self.fc3(x))
        x = F.dropout(x, p=self.drop_p, training=self.training)
        #x = self.fc3(x)
        #x = F.softmax(self.fc2(x))
        
        x = self.fc3(x) 
        
        
        
        return x

    

class CNNLayers(nn.Module):

    def __init__(self, args):
    
        super(CNNLayers, self).__init__()
        
        self.in_dim = args.in_dim# 1/3
        self.n_f = args.n_f#[32,64]
        self.kernel_size = args.kernel_size # [(5,5,5), (3,3,3)]
        self.activations = args.activations#['relu', 'relu']
        self.bns = args.bns #[True, True], 
        self.dropouts = args.dropouts #[True, True]
        #self.dropouts_ps = args.dropouts_ps#[0.5,.7]
        self.paddings = args.paddings #[(0,0,0),(0,0,0)]
        self.strides = args.strides # strides [(1,1,1),(1,1,1),(1,1,1)])
        #self.poolings = args.poolings
        
        assert len(self.n_f) == len(self.activations) == len(self.bns) == len(self.dropouts), 'dimensions mismatch : check dimensions!'
        
        # generate layers seq of seq 
        self._get_layers()
       
    def _get_layers(self):
        
        layers =nn.ModuleList()
        in_channels = self.in_dim
        
        for idx, chans in enumerate(self.n_f):
            sub_layers = nn.ModuleList()                            
                                        
            sub_layers.append(nn.Conv3d(in_channels = in_channels,
                                        out_channels = chans, #self.n_f[idx],
                                        kernel_size = self.kernel_size[idx],
                                        stride = self.strides[idx],
                                        padding = self.paddings[idx]
                                        ))
                                        


            if self.bns[idx] : sub_layers.append(nn.BatchNorm3d(num_features = self.n_f[idx]))

            #if self.dropouts[idx] : sub_layers.append(nn.Dropout3d(p = self.dropouts_ps[idx]))
            
            if self.dropouts[idx] : sub_layers.append(nn.Dropout3d(p = self.dropouts[idx]))

            #if self.activations[idx]  : sub_layers.append(self.__class__.get_activation(self.activations[idx]))
            
            if self.activations[idx]  : sub_layers.append(self.activations[idx])
            
            sub_layers = nn.Sequential(*sub_layers) 
            
            layers.append(sub_layers)
            
            in_channels = self.n_f[idx]
    
        self.layers = nn.Sequential(*layers)
        
        
    @staticmethod
    def get_activation(activation):
        if activation == 'relu':
            activation=nn.ReLU()
        elif activation == 'leakyrelu':
            activation=nn.LeakyReLU(negative_slope=0.1)
        elif activation == 'selu':
            activation=nn.SELU()
        
        return activation
        
        
        
    def forward(self, x):
        
        x = self.layers(x)
        
        return x 
        
        

class CNN3D(nn.Module):

    def __init__(self, args):
        super(CNN3D,self).__init__()
        # check datatype
        if not isinstance(args, NetData):
            raise TypeError("input must be a ParserClass")
            
        self.cnn3d = CNNLayers(args.cnn3d)

        self.lin = LinLayers(args.lin)
        
        self.in_dim = args.lin.in_dim
        
        
    def forward(self, x):
        
        # cnn 3d
        x = self.cnn3d(x)
        
        x = x.view(-1, self.in_dim)
        
        # feedforward
        x = self.lin(x)
        
        return x