End of training
Browse files
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: microsoft/deberta-v3-base
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
model-index:
|
13 |
+
- name: deberta-base
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# deberta-base
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.1665
|
25 |
+
- Accuracy: 0.9601
|
26 |
+
- Precision: 0.9599
|
27 |
+
- Recall: 0.9601
|
28 |
+
- F1: 0.9594
|
29 |
+
- Auroc: 0.9928
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 5e-05
|
49 |
+
- train_batch_size: 16
|
50 |
+
- eval_batch_size: 8
|
51 |
+
- seed: 42
|
52 |
+
- gradient_accumulation_steps: 4
|
53 |
+
- total_train_batch_size: 64
|
54 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
+
- lr_scheduler_type: linear
|
56 |
+
- num_epochs: 1
|
57 |
+
- label_smoothing_factor: 0.03
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Auroc |
|
62 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
|
63 |
+
| 0.4866 | 0.0988 | 256 | 0.2931 | 0.8845 | 0.8939 | 0.8845 | 0.8876 | 0.9465 |
|
64 |
+
| 0.2757 | 0.1977 | 512 | 0.3478 | 0.8898 | 0.8984 | 0.8898 | 0.8765 | 0.9544 |
|
65 |
+
| 0.2433 | 0.2965 | 768 | 0.2097 | 0.9404 | 0.9413 | 0.9404 | 0.9408 | 0.9799 |
|
66 |
+
| 0.2332 | 0.3953 | 1024 | 0.3548 | 0.8815 | 0.8907 | 0.8815 | 0.8657 | 0.9690 |
|
67 |
+
| 0.2152 | 0.4942 | 1280 | 0.1942 | 0.9440 | 0.9434 | 0.9440 | 0.9426 | 0.9868 |
|
68 |
+
| 0.1907 | 0.5930 | 1536 | 0.1615 | 0.9649 | 0.9647 | 0.9649 | 0.9647 | 0.9899 |
|
69 |
+
| 0.1865 | 0.6918 | 1792 | 0.1556 | 0.9655 | 0.9654 | 0.9655 | 0.9654 | 0.9922 |
|
70 |
+
| 0.1865 | 0.7907 | 2048 | 0.2322 | 0.9369 | 0.9370 | 0.9369 | 0.9344 | 0.9773 |
|
71 |
+
| 0.168 | 0.8895 | 2304 | 0.1653 | 0.9672 | 0.9670 | 0.9672 | 0.9668 | 0.9937 |
|
72 |
+
| 0.1732 | 0.9883 | 2560 | 0.1467 | 0.9702 | 0.9716 | 0.9702 | 0.9706 | 0.9935 |
|
73 |
+
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- Transformers 4.45.1
|
78 |
+
- Pytorch 2.4.0
|
79 |
+
- Datasets 3.0.1
|
80 |
+
- Tokenizers 0.20.0
|