bingcheng9 commited on
Commit
e9bf279
·
verified ·
1 Parent(s): 1e6aceb

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,536 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:557850
11
+ - loss:MultipleNegativesRankingLoss
12
+ base_model: microsoft/mpnet-base
13
+ widget:
14
+ - source_sentence: A man is jumping unto his filthy bed.
15
+ sentences:
16
+ - A young male is looking at a newspaper while 2 females walks past him.
17
+ - The bed is dirty.
18
+ - The man is on the moon.
19
+ - source_sentence: A carefully balanced male stands on one foot near a clean ocean
20
+ beach area.
21
+ sentences:
22
+ - A man is ouside near the beach.
23
+ - Three policemen patrol the streets on bikes
24
+ - A man is sitting on his couch.
25
+ - source_sentence: The man is wearing a blue shirt.
26
+ sentences:
27
+ - Near the trashcan the man stood and smoked
28
+ - A man in a blue shirt leans on a wall beside a road with a blue van and red car
29
+ with water in the background.
30
+ - A man in a black shirt is playing a guitar.
31
+ - source_sentence: The girls are outdoors.
32
+ sentences:
33
+ - Two girls riding on an amusement part ride.
34
+ - a guy laughs while doing laundry
35
+ - Three girls are standing together in a room, one is listening, one is writing
36
+ on a wall and the third is talking to them.
37
+ - source_sentence: A construction worker peeking out of a manhole while his coworker
38
+ sits on the sidewalk smiling.
39
+ sentences:
40
+ - A worker is looking out of a manhole.
41
+ - A man is giving a presentation.
42
+ - The workers are both inside the manhole.
43
+ datasets:
44
+ - sentence-transformers/all-nli
45
+ pipeline_tag: sentence-similarity
46
+ library_name: sentence-transformers
47
+ metrics:
48
+ - cosine_accuracy
49
+ - dot_accuracy
50
+ - manhattan_accuracy
51
+ - euclidean_accuracy
52
+ - max_accuracy
53
+ model-index:
54
+ - name: MPNet base trained on AllNLI triplets
55
+ results:
56
+ - task:
57
+ type: triplet
58
+ name: Triplet
59
+ dataset:
60
+ name: all nli dev
61
+ type: all-nli-dev
62
+ metrics:
63
+ - type: cosine_accuracy
64
+ value: 0.9155528554070473
65
+ name: Cosine Accuracy
66
+ - type: dot_accuracy
67
+ value: 0.08475091130012151
68
+ name: Dot Accuracy
69
+ - type: manhattan_accuracy
70
+ value: 0.912363304981774
71
+ name: Manhattan Accuracy
72
+ - type: euclidean_accuracy
73
+ value: 0.9113001215066828
74
+ name: Euclidean Accuracy
75
+ - type: max_accuracy
76
+ value: 0.9155528554070473
77
+ name: Max Accuracy
78
+ - task:
79
+ type: triplet
80
+ name: Triplet
81
+ dataset:
82
+ name: all nli test
83
+ type: all-nli-test
84
+ metrics:
85
+ - type: cosine_accuracy
86
+ value: 0.9261612952035103
87
+ name: Cosine Accuracy
88
+ - type: dot_accuracy
89
+ value: 0.07262823422605538
90
+ name: Dot Accuracy
91
+ - type: manhattan_accuracy
92
+ value: 0.9196550158874263
93
+ name: Manhattan Accuracy
94
+ - type: euclidean_accuracy
95
+ value: 0.9201089423513391
96
+ name: Euclidean Accuracy
97
+ - type: max_accuracy
98
+ value: 0.9261612952035103
99
+ name: Max Accuracy
100
+ ---
101
+
102
+ # MPNet base trained on AllNLI triplets
103
+
104
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
105
+
106
+ ## Model Details
107
+
108
+ ### Model Description
109
+ - **Model Type:** Sentence Transformer
110
+ - **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
111
+ - **Maximum Sequence Length:** 512 tokens
112
+ - **Output Dimensionality:** 768 tokens
113
+ - **Similarity Function:** Cosine Similarity
114
+ - **Training Dataset:**
115
+ - [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
116
+ - **Language:** en
117
+ - **License:** apache-2.0
118
+
119
+ ### Model Sources
120
+
121
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
122
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
123
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
124
+
125
+ ### Full Model Architecture
126
+
127
+ ```
128
+ SentenceTransformer(
129
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
130
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
131
+ )
132
+ ```
133
+
134
+ ## Usage
135
+
136
+ ### Direct Usage (Sentence Transformers)
137
+
138
+ First install the Sentence Transformers library:
139
+
140
+ ```bash
141
+ pip install -U sentence-transformers
142
+ ```
143
+
144
+ Then you can load this model and run inference.
145
+ ```python
146
+ from sentence_transformers import SentenceTransformer
147
+
148
+ # Download from the 🤗 Hub
149
+ model = SentenceTransformer("bingcheng9/mpnet-base-all-nli-triplet")
150
+ # Run inference
151
+ sentences = [
152
+ 'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
153
+ 'A worker is looking out of a manhole.',
154
+ 'The workers are both inside the manhole.',
155
+ ]
156
+ embeddings = model.encode(sentences)
157
+ print(embeddings.shape)
158
+ # [3, 768]
159
+
160
+ # Get the similarity scores for the embeddings
161
+ similarities = model.similarity(embeddings, embeddings)
162
+ print(similarities.shape)
163
+ # [3, 3]
164
+ ```
165
+
166
+ <!--
167
+ ### Direct Usage (Transformers)
168
+
169
+ <details><summary>Click to see the direct usage in Transformers</summary>
170
+
171
+ </details>
172
+ -->
173
+
174
+ <!--
175
+ ### Downstream Usage (Sentence Transformers)
176
+
177
+ You can finetune this model on your own dataset.
178
+
179
+ <details><summary>Click to expand</summary>
180
+
181
+ </details>
182
+ -->
183
+
184
+ <!--
185
+ ### Out-of-Scope Use
186
+
187
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
188
+ -->
189
+
190
+ ## Evaluation
191
+
192
+ ### Metrics
193
+
194
+ #### Triplet
195
+ * Dataset: `all-nli-dev`
196
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
197
+
198
+ | Metric | Value |
199
+ |:-------------------|:-----------|
200
+ | cosine_accuracy | 0.9156 |
201
+ | dot_accuracy | 0.0848 |
202
+ | manhattan_accuracy | 0.9124 |
203
+ | euclidean_accuracy | 0.9113 |
204
+ | **max_accuracy** | **0.9156** |
205
+
206
+ #### Triplet
207
+ * Dataset: `all-nli-test`
208
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
209
+
210
+ | Metric | Value |
211
+ |:-------------------|:-----------|
212
+ | cosine_accuracy | 0.9262 |
213
+ | dot_accuracy | 0.0726 |
214
+ | manhattan_accuracy | 0.9197 |
215
+ | euclidean_accuracy | 0.9201 |
216
+ | **max_accuracy** | **0.9262** |
217
+
218
+ <!--
219
+ ## Bias, Risks and Limitations
220
+
221
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
222
+ -->
223
+
224
+ <!--
225
+ ### Recommendations
226
+
227
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
228
+ -->
229
+
230
+ ## Training Details
231
+
232
+ ### Training Dataset
233
+
234
+ #### all-nli
235
+
236
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
237
+ * Size: 557,850 training samples
238
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
239
+ * Approximate statistics based on the first 1000 samples:
240
+ | | anchor | positive | negative |
241
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
242
+ | type | string | string | string |
243
+ | details | <ul><li>min: 7 tokens</li><li>mean: 10.46 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.81 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
244
+ * Samples:
245
+ | anchor | positive | negative |
246
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
247
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
248
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
249
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
250
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
251
+ ```json
252
+ {
253
+ "scale": 20.0,
254
+ "similarity_fct": "cos_sim"
255
+ }
256
+ ```
257
+
258
+ ### Evaluation Dataset
259
+
260
+ #### all-nli
261
+
262
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
263
+ * Size: 6,584 evaluation samples
264
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
265
+ * Approximate statistics based on the first 1000 samples:
266
+ | | anchor | positive | negative |
267
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
268
+ | type | string | string | string |
269
+ | details | <ul><li>min: 6 tokens</li><li>mean: 17.95 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.78 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.35 tokens</li><li>max: 29 tokens</li></ul> |
270
+ * Samples:
271
+ | anchor | positive | negative |
272
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
273
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
274
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
275
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
276
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
277
+ ```json
278
+ {
279
+ "scale": 20.0,
280
+ "similarity_fct": "cos_sim"
281
+ }
282
+ ```
283
+
284
+ ### Training Hyperparameters
285
+ #### Non-Default Hyperparameters
286
+
287
+ - `eval_strategy`: steps
288
+ - `per_device_train_batch_size`: 16
289
+ - `per_device_eval_batch_size`: 16
290
+ - `learning_rate`: 2e-05
291
+ - `num_train_epochs`: 1
292
+ - `warmup_ratio`: 0.1
293
+ - `batch_sampler`: no_duplicates
294
+
295
+ #### All Hyperparameters
296
+ <details><summary>Click to expand</summary>
297
+
298
+ - `overwrite_output_dir`: False
299
+ - `do_predict`: False
300
+ - `eval_strategy`: steps
301
+ - `prediction_loss_only`: True
302
+ - `per_device_train_batch_size`: 16
303
+ - `per_device_eval_batch_size`: 16
304
+ - `per_gpu_train_batch_size`: None
305
+ - `per_gpu_eval_batch_size`: None
306
+ - `gradient_accumulation_steps`: 1
307
+ - `eval_accumulation_steps`: None
308
+ - `torch_empty_cache_steps`: None
309
+ - `learning_rate`: 2e-05
310
+ - `weight_decay`: 0.0
311
+ - `adam_beta1`: 0.9
312
+ - `adam_beta2`: 0.999
313
+ - `adam_epsilon`: 1e-08
314
+ - `max_grad_norm`: 1.0
315
+ - `num_train_epochs`: 1
316
+ - `max_steps`: -1
317
+ - `lr_scheduler_type`: linear
318
+ - `lr_scheduler_kwargs`: {}
319
+ - `warmup_ratio`: 0.1
320
+ - `warmup_steps`: 0
321
+ - `log_level`: passive
322
+ - `log_level_replica`: warning
323
+ - `log_on_each_node`: True
324
+ - `logging_nan_inf_filter`: True
325
+ - `save_safetensors`: True
326
+ - `save_on_each_node`: False
327
+ - `save_only_model`: False
328
+ - `restore_callback_states_from_checkpoint`: False
329
+ - `no_cuda`: False
330
+ - `use_cpu`: False
331
+ - `use_mps_device`: False
332
+ - `seed`: 42
333
+ - `data_seed`: None
334
+ - `jit_mode_eval`: False
335
+ - `use_ipex`: False
336
+ - `bf16`: False
337
+ - `fp16`: False
338
+ - `fp16_opt_level`: O1
339
+ - `half_precision_backend`: auto
340
+ - `bf16_full_eval`: False
341
+ - `fp16_full_eval`: False
342
+ - `tf32`: None
343
+ - `local_rank`: 0
344
+ - `ddp_backend`: None
345
+ - `tpu_num_cores`: None
346
+ - `tpu_metrics_debug`: False
347
+ - `debug`: []
348
+ - `dataloader_drop_last`: False
349
+ - `dataloader_num_workers`: 0
350
+ - `dataloader_prefetch_factor`: None
351
+ - `past_index`: -1
352
+ - `disable_tqdm`: False
353
+ - `remove_unused_columns`: True
354
+ - `label_names`: None
355
+ - `load_best_model_at_end`: False
356
+ - `ignore_data_skip`: False
357
+ - `fsdp`: []
358
+ - `fsdp_min_num_params`: 0
359
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
360
+ - `fsdp_transformer_layer_cls_to_wrap`: None
361
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
362
+ - `deepspeed`: None
363
+ - `label_smoothing_factor`: 0.0
364
+ - `optim`: adamw_torch
365
+ - `optim_args`: None
366
+ - `adafactor`: False
367
+ - `group_by_length`: False
368
+ - `length_column_name`: length
369
+ - `ddp_find_unused_parameters`: None
370
+ - `ddp_bucket_cap_mb`: None
371
+ - `ddp_broadcast_buffers`: False
372
+ - `dataloader_pin_memory`: True
373
+ - `dataloader_persistent_workers`: False
374
+ - `skip_memory_metrics`: True
375
+ - `use_legacy_prediction_loop`: False
376
+ - `push_to_hub`: False
377
+ - `resume_from_checkpoint`: None
378
+ - `hub_model_id`: None
379
+ - `hub_strategy`: every_save
380
+ - `hub_private_repo`: False
381
+ - `hub_always_push`: False
382
+ - `gradient_checkpointing`: False
383
+ - `gradient_checkpointing_kwargs`: None
384
+ - `include_inputs_for_metrics`: False
385
+ - `eval_do_concat_batches`: True
386
+ - `fp16_backend`: auto
387
+ - `push_to_hub_model_id`: None
388
+ - `push_to_hub_organization`: None
389
+ - `mp_parameters`:
390
+ - `auto_find_batch_size`: False
391
+ - `full_determinism`: False
392
+ - `torchdynamo`: None
393
+ - `ray_scope`: last
394
+ - `ddp_timeout`: 1800
395
+ - `torch_compile`: False
396
+ - `torch_compile_backend`: None
397
+ - `torch_compile_mode`: None
398
+ - `dispatch_batches`: None
399
+ - `split_batches`: None
400
+ - `include_tokens_per_second`: False
401
+ - `include_num_input_tokens_seen`: False
402
+ - `neftune_noise_alpha`: None
403
+ - `optim_target_modules`: None
404
+ - `batch_eval_metrics`: False
405
+ - `eval_on_start`: False
406
+ - `use_liger_kernel`: False
407
+ - `eval_use_gather_object`: False
408
+ - `batch_sampler`: no_duplicates
409
+ - `multi_dataset_batch_sampler`: proportional
410
+
411
+ </details>
412
+
413
+ ### Training Logs
414
+ | Epoch | Step | Training Loss | loss | all-nli-dev_max_accuracy | all-nli-test_max_accuracy |
415
+ |:-----:|:----:|:-------------:|:------:|:------------------------:|:-------------------------:|
416
+ | 0 | 0 | - | - | 0.6832 | - |
417
+ | 0.016 | 100 | 3.0282 | 1.5784 | 0.7751 | - |
418
+ | 0.032 | 200 | 1.2537 | 0.9115 | 0.7983 | - |
419
+ | 0.048 | 300 | 1.435 | 0.7883 | 0.8095 | - |
420
+ | 0.064 | 400 | 0.8952 | 0.7637 | 0.8112 | - |
421
+ | 0.08 | 500 | 0.8482 | 0.8154 | 0.8086 | - |
422
+ | 0.096 | 600 | 1.056 | 0.8993 | 0.8033 | - |
423
+ | 0.112 | 700 | 0.967 | 0.8740 | 0.8007 | - |
424
+ | 0.128 | 800 | 1.1139 | 1.0261 | 0.7930 | - |
425
+ | 0.144 | 900 | 1.1765 | 0.9142 | 0.8127 | - |
426
+ | 0.16 | 1000 | 1.1022 | 0.8580 | 0.7980 | - |
427
+ | 0.176 | 1100 | 1.1095 | 1.0273 | 0.7889 | - |
428
+ | 0.192 | 1200 | 1.0725 | 0.9443 | 0.7998 | - |
429
+ | 0.208 | 1300 | 0.9075 | 0.8191 | 0.8070 | - |
430
+ | 0.224 | 1400 | 0.7504 | 0.8069 | 0.8104 | - |
431
+ | 0.24 | 1500 | 0.815 | 0.7824 | 0.8193 | - |
432
+ | 0.256 | 1600 | 0.6089 | 0.8256 | 0.8168 | - |
433
+ | 0.272 | 1700 | 0.8689 | 0.8470 | 0.8079 | - |
434
+ | 0.288 | 1800 | 0.8359 | 0.8588 | 0.8103 | - |
435
+ | 0.304 | 1900 | 0.8157 | 0.7955 | 0.8129 | - |
436
+ | 0.32 | 2000 | 0.7511 | 0.7027 | 0.8467 | - |
437
+ | 0.336 | 2100 | 0.603 | 0.7624 | 0.8467 | - |
438
+ | 0.352 | 2200 | 0.6005 | 0.7071 | 0.8686 | - |
439
+ | 0.368 | 2300 | 0.8079 | 0.7497 | 0.8492 | - |
440
+ | 0.384 | 2400 | 0.7237 | 0.6801 | 0.8586 | - |
441
+ | 0.4 | 2500 | 0.669 | 0.6595 | 0.8694 | - |
442
+ | 0.416 | 2600 | 0.6013 | 0.6700 | 0.8587 | - |
443
+ | 0.432 | 2700 | 0.8929 | 0.7217 | 0.8645 | - |
444
+ | 0.448 | 2800 | 0.8627 | 0.6720 | 0.8521 | - |
445
+ | 0.464 | 2900 | 0.8279 | 0.6561 | 0.8698 | - |
446
+ | 0.48 | 3000 | 0.6893 | 0.6243 | 0.8692 | - |
447
+ | 0.496 | 3100 | 0.7609 | 0.6052 | 0.8711 | - |
448
+ | 0.512 | 3200 | 0.5704 | 0.6042 | 0.8677 | - |
449
+ | 0.528 | 3300 | 0.6117 | 0.5398 | 0.8827 | - |
450
+ | 0.544 | 3400 | 0.5231 | 0.5743 | 0.8797 | - |
451
+ | 0.56 | 3500 | 0.5231 | 0.5817 | 0.8923 | - |
452
+ | 0.576 | 3600 | 0.4825 | 0.5309 | 0.8911 | - |
453
+ | 0.592 | 3700 | 0.5464 | 0.5261 | 0.8961 | - |
454
+ | 0.608 | 3800 | 0.4846 | 0.5017 | 0.8979 | - |
455
+ | 0.624 | 3900 | 0.4896 | 0.5280 | 0.8947 | - |
456
+ | 0.64 | 4000 | 0.7499 | 0.5435 | 0.9061 | - |
457
+ | 0.656 | 4100 | 0.916 | 0.5268 | 0.9060 | - |
458
+ | 0.672 | 4200 | 0.8733 | 0.4855 | 0.9074 | - |
459
+ | 0.688 | 4300 | 0.6963 | 0.4717 | 0.9105 | - |
460
+ | 0.704 | 4400 | 0.5907 | 0.4567 | 0.9142 | - |
461
+ | 0.72 | 4500 | 0.5768 | 0.4702 | 0.9111 | - |
462
+ | 0.736 | 4600 | 0.6173 | 0.4491 | 0.9151 | - |
463
+ | 0.752 | 4700 | 0.6802 | 0.4680 | 0.9124 | - |
464
+ | 0.768 | 4800 | 0.6099 | 0.4372 | 0.9130 | - |
465
+ | 0.784 | 4900 | 0.5689 | 0.4480 | 0.9066 | - |
466
+ | 0.8 | 5000 | 0.6554 | 0.4603 | 0.9118 | - |
467
+ | 0.816 | 5100 | 0.511 | 0.4356 | 0.9116 | - |
468
+ | 0.832 | 5200 | 0.5725 | 0.4246 | 0.9092 | - |
469
+ | 0.848 | 5300 | 0.5196 | 0.4359 | 0.9107 | - |
470
+ | 0.864 | 5400 | 0.6112 | 0.4403 | 0.9104 | - |
471
+ | 0.88 | 5500 | 0.5233 | 0.4236 | 0.9115 | - |
472
+ | 0.896 | 5600 | 0.5467 | 0.4217 | 0.9127 | - |
473
+ | 0.912 | 5700 | 0.6109 | 0.4199 | 0.9156 | - |
474
+ | 0.928 | 5800 | 0.54 | 0.4077 | 0.9148 | - |
475
+ | 0.944 | 5900 | 0.6739 | 0.4111 | 0.9145 | - |
476
+ | 0.96 | 6000 | 0.723 | 0.4170 | 0.9154 | - |
477
+ | 0.976 | 6100 | 0.6753 | 0.4162 | 0.9154 | - |
478
+ | 0.992 | 6200 | 0.0591 | 0.4157 | 0.9156 | - |
479
+ | 1.0 | 6250 | - | - | - | 0.9262 |
480
+
481
+
482
+ ### Framework Versions
483
+ - Python: 3.12.4
484
+ - Sentence Transformers: 3.1.1
485
+ - Transformers: 4.45.2
486
+ - PyTorch: 2.2.2
487
+ - Accelerate: 0.26.0
488
+ - Datasets: 3.0.2
489
+ - Tokenizers: 0.20.1
490
+
491
+ ## Citation
492
+
493
+ ### BibTeX
494
+
495
+ #### Sentence Transformers
496
+ ```bibtex
497
+ @inproceedings{reimers-2019-sentence-bert,
498
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
499
+ author = "Reimers, Nils and Gurevych, Iryna",
500
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
501
+ month = "11",
502
+ year = "2019",
503
+ publisher = "Association for Computational Linguistics",
504
+ url = "https://arxiv.org/abs/1908.10084",
505
+ }
506
+ ```
507
+
508
+ #### MultipleNegativesRankingLoss
509
+ ```bibtex
510
+ @misc{henderson2017efficient,
511
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
512
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
513
+ year={2017},
514
+ eprint={1705.00652},
515
+ archivePrefix={arXiv},
516
+ primaryClass={cs.CL}
517
+ }
518
+ ```
519
+
520
+ <!--
521
+ ## Glossary
522
+
523
+ *Clearly define terms in order to be accessible across audiences.*
524
+ -->
525
+
526
+ <!--
527
+ ## Model Card Authors
528
+
529
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
530
+ -->
531
+
532
+ <!--
533
+ ## Model Card Contact
534
+
535
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
536
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/mpnet-base",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.45.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.2.2"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70dc3108507d11e3b0a847e7409fae2fa5944e3b488e6af013ba4fa37118e19b
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": false,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "model_max_length": 512,
59
+ "pad_token": "<pad>",
60
+ "sep_token": "</s>",
61
+ "strip_accents": null,
62
+ "tokenize_chinese_chars": true,
63
+ "tokenizer_class": "MPNetTokenizer",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff