File size: 7,121 Bytes
ea91a9c fae4416 2dbb3da b20ba54 ea91a9c 5bf6747 ea91a9c b20ba54 088fd06 00ba240 ea91a9c a89f493 591fea3 ea91a9c 2dbb3da ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c e9dca93 ea91a9c e9dca93 ea91a9c d69ad57 ea91a9c 315397e ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c 9e422a0 ea91a9c d69ad57 9e422a0 ea91a9c 9e422a0 ea91a9c 9e422a0 d69ad57 ea91a9c dbcbdfe 85ab26c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c 3748f42 d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c d69ad57 ea91a9c a89f493 d69ad57 ea91a9c fae4416 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
---
library_name: transformers
language:
- bo
- en
base_model: google-t5/t5-large
license: cc
metrics:
- bleu
pipeline_tag: translation
new_version: billingsmoore/tibetan-to-english-translation
---
# Model Card for phonetic-tibetan-to-english-translation
This model has been superseded by the model ['billingsmoore/tibetan-to-english-translation'](https://huggingface.co/billingsmoore/tibetan-to-english-translation)
This model is a neural machine translation model for translating Literary Tibetan to English.
The model expects Tibetan transliterated according to THL Simplified Phonetic Transliteration as an input and outputs an English translation.
The model was evaluated using the BLEU metric as implemented by [sacreBLEU](https://pypi.org/project/sacrebleu/), with a final score of 83.4374 on evaluation data.
However, this score is unusually high, and may be the result of testing error. Stricter evaluation
and training are currently in progress.
This work is licensed under Creative Commons Attribution-NonCommercial 4.0 International
## Model Details
### Model Description
This model is a finetuned T5 model with 770 million parameters.
- **Developed by:** billingsmoore
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** Tibetan, English
- **License:** [Attribution-NonCommercial 4.0 International](https://creativecommons.org/licenses/by-nc/4.0/)
- **Finetuned from model [optional]:** 'google-t5/t5-large'
### Model Sources [optional]
- **Repository:** [MLotsawa on Github](https://github.com/billingsmoore/MLotsawa)
## Uses
This model is intended to be used as the translation model in the larger MLotsawa software, but can also be used in a Jupyter notebook or Python script.
### Direct Use
To use this model for translation you can use the following code:
```python
from transformers import pipeline
translator = pipeline('translation', 'billingsmoore/phonetic-tibetan-to-english-translation')
input_text = <your transliterated Tibetan text>
translation = translator(input_text)
print(translation)
```
Note that if your input text is not already transliterated in THL Simplified Phonetic Transliteration, you can transliterate unicode Tibetan using the thl-phonetic-transliteration module like so:
```python
from thl_phonetic_transliteration.transliterator import Transliterator
tibetan_text = '<your Tibetan unicode>'
transliterator = Transliterator()
thl_phonetics = transliterator.convert(tibetan_text)
```
The above module uses the model ['billingsmoore/tibetan-phonetic-transliteration'](https://huggingface.co/billingsmoore/tibetan-phonetic-transliteration).
More information about that model and how to use it can be found by clicking that link.
### Downstream Use
The model can be further finetuned using the following code:
```python
from datasets import load_dataset
from transformers import (
AutoTokenizer, DataCollatorForSeq2Seq,
AutoModelForSeq2SeqLM, Seq2SeqTrainingArguments,
Seq2SeqTrainer, EarlyStoppingCallback, Adafactor
)
import evaluate
import numpy as np
from accelerate import Accelerator
data = load_dataset(<path_to_your_dataset>)
checkpoint = "billingsmoore/phonetic-tibetan-to-english-translation"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint)
source_lang = 'bo'
target_lang = 'en'
prefix = "translate Tibetan to English: "
def preprocess_function(examples):
inputs = [prefix + example[source_lang] for example in examples['translation']]
targets = [example[target_lang] for example in examples['translation']]
model_inputs = tokenizer(inputs, text_target=targets, max_length=128, truncation=True)
return model_inputs
tokenized_dataset = dataset.map(preprocess_function, batched=True)
metric = evaluate.load("sacrebleu")
def postprocess_text(preds, labels):
preds = [pred.strip() for pred in preds]
labels = [[label.strip()] for label in labels]
return preds, labels
def compute_metrics(eval_preds):
preds, labels = eval_preds
if isinstance(preds, tuple):
preds = preds[0]
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
result = {"bleu": result["score"]}
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
result["gen_len"] = np.mean(prediction_lens)
result = {k: round(v, 4) for k, v in result.items()}
return result
early_stop = EarlyStoppingCallback()
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint, device_map="auto")
optimizer = Adafactor(
model.parameters(),
scale_parameter=True,
relative_step=False,
warmup_init=False,
lr=3e-4
)
training_args = Seq2SeqTrainingArguments(
output_dir=".",
auto_find_batch_size=True,
predict_with_generate=True,
fp16=False, #check this
push_to_hub=False,
eval_strategy='epoch',
save_strategy='epoch',
load_best_model_at_end=True
)
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset['train'],
eval_dataset=tokenized_dataset['test'],
tokenizer=tokenizer,
optimizers=(optimizer, None),
data_collator=data_collator,
compute_metrics=compute_metrics,
callbacks=[early_stop]
)
trainer.train()
```
## Training Details
### Training Data
[Training Data for this project is available here.](https://www.kaggle.com/datasets/billingsmoore/classical-tibetan-to-english-translation-dataset)
This dataset consists of 100,000 pairs of sentences or phrases. The first member of each pair is a sentence or phrase in Classical Tibetan. The second member is the English translation of the first.
The pairs are pulled from texts sourced from Lotsawa House (lotsawahouse.org) and are offered under the same license as the original texts they provided.
This data was scraped, cleaned, and formatted programmatically.
### Training Procedure
This model was trained for 6 epochs on the dataset described above.
#### Training Hyperparameters
- This model was trained using the Adafactor optimizer with a learning rate of 2e-5.
## Evaluation
The evaluation metric for this model was the BLEU score as implemented by [sacreBLEU](https://pypi.org/project/sacrebleu/).
BLEU (Bilingual Evaluation Understudy) scores measure the quality of
machine-generated translations by comparing them to human-provided reference translations. The score ranges from 0 to 100,
where 100 represents a perfect match with the reference translations. It evaluates the precision of n-grams (word sequences)
in the generated text, with higher scores indicating closer alignment to the reference translations. A brevity penalty is applied
to discourage translations that are too short.
The final BLEU score was 83.4374. |