billborkowski commited on
Commit
6c1d00f
·
1 Parent(s): 9852211

Q4 gguf, config.json, image processing

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ mmproj-model-f16.gguf filter=lfs diff=lfs merge=lfs -text
37
+ NousResearch_Nous-Hermes-2-Vision-GGUF_Q4_0.gguf filter=lfs diff=lfs merge=lfs -text
NousResearch_Nous-Hermes-2-Vision-GGUF_Q4_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3fa9f25cb31da1746288f8bf2e88ab110d28d6510e662efd9f4100c2ea83ba4
3
+ size 4108928000
README.md ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-v0.1
3
+ tags:
4
+ - mistral
5
+ - instruct
6
+ - finetune
7
+ - chatml
8
+ - gpt4
9
+ - synthetic data
10
+ - distillation
11
+ - multimodal
12
+ - llava
13
+ model-index:
14
+ - name: Nous-Hermes-2-Vision
15
+ results: []
16
+ license: apache-2.0
17
+ language:
18
+ - en
19
+ ---
20
+
21
+ GGUF Quants by Twobob, Thanks to @jartine and @cmp-nct for the assists
22
+
23
+ It's vicuna ref: [here](https://github.com/qnguyen3/hermes-llava/blob/173b4ef441b5371c1e7d99da7a2e7c14c77ad12f/llava/conversation.py#L252)
24
+
25
+ Caveat emptor: There is still some kind of bug in the inference that is likely to get fixed upstream. Just FYI
26
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64a22257d3149e05bc6d259f/aF3VQrpwGJQLxbeyj1JOf.png)
27
+
28
+
29
+ # Nous-Hermes-2-Vision - Mistral 7B
30
+
31
+
32
+ ![image/png](https://camo.githubusercontent.com/b09dc35a93b4b70748fa4e2f307b011cd3d548369dd926ec9a2d3a51f7b3721e/68747470733a2f2f66696c65732e6f616975736572636f6e74656e742e636f6d2f66696c652d6b4437565358734f5649576472624b3042353662686644363f73653d323032332d31322d3033543137253341333425334135385a2673703d722673763d323032312d30382d30362673723d6226727363633d6d61782d6167652533443331353336303030253243253230696d6d757461626c6526727363643d6174746163686d656e7425334225323066696c656e616d6525334439643530333039622d356236342d343964302d623832362d6165316638366132396661382e77656270267369673d50396973694b4679654a54435a47424b526d45494b3043586e6e55676c6334704a583071312532425478666a34253344)
33
+
34
+ *In the tapestry of Greek mythology, Hermes reigns as the eloquent Messenger of the Gods, a deity who deftly bridges the realms through the art of communication. It is in homage to this divine mediator that I name this advanced LLM "Hermes," a system crafted to navigate the complex intricacies of human discourse with celestial finesse.*
35
+
36
+ ## Model description
37
+
38
+ Nous-Hermes-2-Vision stands as a pioneering Vision-Language Model, leveraging advancements from the renowned **OpenHermes-2.5-Mistral-7B** by teknium. This model incorporates two pivotal enhancements, setting it apart as a cutting-edge solution:
39
+
40
+ - **SigLIP-400M Integration**: Diverging from traditional approaches that rely on substantial 3B vision encoders, Nous-Hermes-2-Vision harnesses the formidable SigLIP-400M. This strategic choice not only streamlines the model's architecture, making it more lightweight, but also capitalizes on SigLIP's remarkable capabilities. The result? A remarkable boost in performance that defies conventional expectations.
41
+
42
+ - **Custom Dataset Enriched with Function Calling**: Our model's training data includes a unique feature – function calling. This distinctive addition transforms Nous-Hermes-2-Vision into a **Vision-Language Action Model**. Developers now have a versatile tool at their disposal, primed for crafting a myriad of ingenious automations.
43
+
44
+ This project is led by [qnguyen3](https://twitter.com/stablequan) and [teknium](https://twitter.com/Teknium1).
45
+ ## Training
46
+ ### Dataset
47
+ - 220K from **LVIS-INSTRUCT4V**
48
+ - 60K from **ShareGPT4V**
49
+ - 150K Private **Function Calling Data**
50
+ - 50K conversations from teknium's **OpenHermes-2.5**
51
+
52
+ ## Usage
53
+ ### Prompt Format
54
+ - Like other LLaVA's variants, this model uses Vicuna-V1 as its prompt template. Please refer to `conv_llava_v1` in [this file](https://github.com/qnguyen3/hermes-llava/blob/main/llava/conversation.py)
55
+ - For Gradio UI, please visit this [GitHub Repo](https://github.com/qnguyen3/hermes-llava)
56
+
57
+ ### Function Calling
58
+ - For functiong calling, the message should start with a `<fn_call>` tag. Here is an example:
59
+
60
+ ```json
61
+ <fn_call>{
62
+ "type": "object",
63
+ "properties": {
64
+ "bus_colors": {
65
+ "type": "array",
66
+ "description": "The colors of the bus in the image.",
67
+ "items": {
68
+ "type": "string",
69
+ "enum": ["red", "blue", "green", "white"]
70
+ }
71
+ },
72
+ "bus_features": {
73
+ "type": "string",
74
+ "description": "The features seen on the back of the bus."
75
+ },
76
+ "bus_location": {
77
+ "type": "string",
78
+ "description": "The location of the bus (driving or pulled off to the side).",
79
+ "enum": ["driving", "pulled off to the side"]
80
+ }
81
+ }
82
+ }
83
+ ```
84
+
85
+ Output:
86
+ ```json
87
+ {
88
+ "bus_colors": ["red", "white"],
89
+ "bus_features": "An advertisement",
90
+ "bus_location": "driving"
91
+ }
92
+ ```
93
+
94
+ ## Example
95
+
96
+ ### Chat
97
+ ![image/png](https://i.ibb.co/tMg8h2t/Screenshot-from-2023-12-04-00-13-59.png)
98
+
99
+ ### Function Calling
100
+ Input image:
101
+
102
+ ![image/png](https://www.slcmenu.com/wp-content/uploads/2017/11/In-N-Out-Burger-menu-2020-982x1024.jpg)
103
+
104
+ Input message:
105
+ ```json
106
+ <fn_call>{
107
+ "type": "object",
108
+ "properties": {
109
+ "food_list": {
110
+ "type": "array",
111
+ "description": "List of all the food",
112
+ "items": {
113
+ "type": "string",
114
+ }
115
+ },
116
+ }
117
+ }
118
+ ```
119
+
120
+ Output:
121
+ ```json
122
+ {
123
+ "food_list": [
124
+ "Double Burger",
125
+ "Cheeseburger",
126
+ "French Fries",
127
+ "Shakes",
128
+ "Coffee"
129
+ ]
130
+ }
131
+ ```
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "teknium/OpenHermes-2.5-Mistral-7B",
3
+ "architectures": [
4
+ "LlavaMistralForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 32000,
8
+ "freeze_mm_mlp_adapter": false,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "image_aspect_ratio": "pad",
12
+ "image_grid_pinpoints": null,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 14336,
15
+ "max_position_embeddings": 32768,
16
+ "mm_hidden_size": 1152,
17
+ "mm_projector_type": "mlp2x_gelu",
18
+ "mm_use_im_patch_token": false,
19
+ "mm_use_im_start_end": false,
20
+ "mm_vision_select_feature": "patch",
21
+ "mm_vision_select_layer": -2,
22
+ "mm_vision_tower": "ikala/ViT-SO400M-14-SigLIP-384-hf",
23
+ "model_type": "llava_mistral",
24
+ "num_attention_heads": 32,
25
+ "num_hidden_layers": 32,
26
+ "num_key_value_heads": 8,
27
+ "rms_norm_eps": 1e-05,
28
+ "rope_theta": 10000.0,
29
+ "sliding_window": 4096,
30
+ "tie_word_embeddings": false,
31
+ "torch_dtype": "bfloat16",
32
+ "transformers_version": "4.34.1",
33
+ "tune_mm_mlp_adapter": false,
34
+ "use_cache": true,
35
+ "use_mm_proj": true,
36
+ "vocab_size": 32002
37
+ }
mmproj-model-f16.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c2a602b13c155db542d26fa5884e98e1ca4f2bb947e18957fc32c8f87492182
3
+ size 839316352