bilal01 commited on
Commit
d12668f
1 Parent(s): 8f1be65

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -0
README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ tags:
4
+ - vision
5
+ - image-segmentation
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: segformer-b0-finetuned-segments-stamp-verification
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # segformer-b0-finetuned-segments-stamp-verification
16
+
17
+ This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the bilal01/stamp-verification dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.0372
20
+ - Mean Iou: 0.1908
21
+ - Mean Accuracy: 0.3817
22
+ - Overall Accuracy: 0.3817
23
+ - Accuracy Unlabeled: nan
24
+ - Accuracy Stamp: 0.3817
25
+ - Iou Unlabeled: 0.0
26
+ - Iou Stamp: 0.3817
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 6e-05
46
+ - train_batch_size: 2
47
+ - eval_batch_size: 2
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 20
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Stamp | Iou Unlabeled | Iou Stamp |
56
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:--------------:|:-------------:|:---------:|
57
+ | 0.3384 | 0.83 | 20 | 0.2769 | 0.0335 | 0.0670 | 0.0670 | nan | 0.0670 | 0.0 | 0.0670 |
58
+ | 0.2626 | 1.67 | 40 | 0.2201 | 0.1256 | 0.2512 | 0.2512 | nan | 0.2512 | 0.0 | 0.2512 |
59
+ | 0.1944 | 2.5 | 60 | 0.1918 | 0.2030 | 0.4060 | 0.4060 | nan | 0.4060 | 0.0 | 0.4060 |
60
+ | 0.2665 | 3.33 | 80 | 0.1564 | 0.1574 | 0.3148 | 0.3148 | nan | 0.3148 | 0.0 | 0.3148 |
61
+ | 0.1351 | 4.17 | 100 | 0.1194 | 0.1817 | 0.3634 | 0.3634 | nan | 0.3634 | 0.0 | 0.3634 |
62
+ | 0.1156 | 5.0 | 120 | 0.1035 | 0.1334 | 0.2668 | 0.2668 | nan | 0.2668 | 0.0 | 0.2668 |
63
+ | 0.1103 | 5.83 | 140 | 0.0895 | 0.1819 | 0.3638 | 0.3638 | nan | 0.3638 | 0.0 | 0.3638 |
64
+ | 0.0882 | 6.67 | 160 | 0.0746 | 0.0833 | 0.1665 | 0.1665 | nan | 0.1665 | 0.0 | 0.1665 |
65
+ | 0.0778 | 7.5 | 180 | 0.0655 | 0.1927 | 0.3854 | 0.3854 | nan | 0.3854 | 0.0 | 0.3854 |
66
+ | 0.0672 | 8.33 | 200 | 0.0585 | 0.1327 | 0.2654 | 0.2654 | nan | 0.2654 | 0.0 | 0.2654 |
67
+ | 0.0612 | 9.17 | 220 | 0.0615 | 0.1640 | 0.3279 | 0.3279 | nan | 0.3279 | 0.0 | 0.3279 |
68
+ | 0.0611 | 10.0 | 240 | 0.0546 | 0.2466 | 0.4933 | 0.4933 | nan | 0.4933 | 0.0 | 0.4933 |
69
+ | 0.0537 | 10.83 | 260 | 0.0499 | 0.1129 | 0.2258 | 0.2258 | nan | 0.2258 | 0.0 | 0.2258 |
70
+ | 0.0504 | 11.67 | 280 | 0.0502 | 0.1857 | 0.3713 | 0.3713 | nan | 0.3713 | 0.0 | 0.3713 |
71
+ | 0.0707 | 12.5 | 300 | 0.0442 | 0.1710 | 0.3419 | 0.3419 | nan | 0.3419 | 0.0 | 0.3419 |
72
+ | 0.0508 | 13.33 | 320 | 0.0434 | 0.2003 | 0.4006 | 0.4006 | nan | 0.4006 | 0.0 | 0.4006 |
73
+ | 0.0396 | 14.17 | 340 | 0.0420 | 0.1409 | 0.2818 | 0.2818 | nan | 0.2818 | 0.0 | 0.2818 |
74
+ | 0.0395 | 15.0 | 360 | 0.0417 | 0.1640 | 0.3280 | 0.3280 | nan | 0.3280 | 0.0 | 0.3280 |
75
+ | 0.0387 | 15.83 | 380 | 0.0397 | 0.1827 | 0.3655 | 0.3655 | nan | 0.3655 | 0.0 | 0.3655 |
76
+ | 0.0458 | 16.67 | 400 | 0.0387 | 0.1582 | 0.3165 | 0.3165 | nan | 0.3165 | 0.0 | 0.3165 |
77
+ | 0.0363 | 17.5 | 420 | 0.0390 | 0.1724 | 0.3449 | 0.3449 | nan | 0.3449 | 0.0 | 0.3449 |
78
+ | 0.0401 | 18.33 | 440 | 0.0382 | 0.2018 | 0.4036 | 0.4036 | nan | 0.4036 | 0.0 | 0.4036 |
79
+ | 0.0355 | 19.17 | 460 | 0.0382 | 0.2032 | 0.4064 | 0.4064 | nan | 0.4064 | 0.0 | 0.4064 |
80
+ | 0.0447 | 20.0 | 480 | 0.0372 | 0.1908 | 0.3817 | 0.3817 | nan | 0.3817 | 0.0 | 0.3817 |
81
+
82
+
83
+ ### Framework versions
84
+
85
+ - Transformers 4.28.0
86
+ - Pytorch 2.0.0+cu118
87
+ - Datasets 2.12.0
88
+ - Tokenizers 0.13.3