update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
tags:
|
4 |
+
- vision
|
5 |
+
- image-segmentation
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: segformer-b0-finetuned-segments-stamp-verification
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# segformer-b0-finetuned-segments-stamp-verification
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the bilal01/stamp-verification dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.0372
|
20 |
+
- Mean Iou: 0.1908
|
21 |
+
- Mean Accuracy: 0.3817
|
22 |
+
- Overall Accuracy: 0.3817
|
23 |
+
- Accuracy Unlabeled: nan
|
24 |
+
- Accuracy Stamp: 0.3817
|
25 |
+
- Iou Unlabeled: 0.0
|
26 |
+
- Iou Stamp: 0.3817
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 6e-05
|
46 |
+
- train_batch_size: 2
|
47 |
+
- eval_batch_size: 2
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 20
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Stamp | Iou Unlabeled | Iou Stamp |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:--------------:|:-------------:|:---------:|
|
57 |
+
| 0.3384 | 0.83 | 20 | 0.2769 | 0.0335 | 0.0670 | 0.0670 | nan | 0.0670 | 0.0 | 0.0670 |
|
58 |
+
| 0.2626 | 1.67 | 40 | 0.2201 | 0.1256 | 0.2512 | 0.2512 | nan | 0.2512 | 0.0 | 0.2512 |
|
59 |
+
| 0.1944 | 2.5 | 60 | 0.1918 | 0.2030 | 0.4060 | 0.4060 | nan | 0.4060 | 0.0 | 0.4060 |
|
60 |
+
| 0.2665 | 3.33 | 80 | 0.1564 | 0.1574 | 0.3148 | 0.3148 | nan | 0.3148 | 0.0 | 0.3148 |
|
61 |
+
| 0.1351 | 4.17 | 100 | 0.1194 | 0.1817 | 0.3634 | 0.3634 | nan | 0.3634 | 0.0 | 0.3634 |
|
62 |
+
| 0.1156 | 5.0 | 120 | 0.1035 | 0.1334 | 0.2668 | 0.2668 | nan | 0.2668 | 0.0 | 0.2668 |
|
63 |
+
| 0.1103 | 5.83 | 140 | 0.0895 | 0.1819 | 0.3638 | 0.3638 | nan | 0.3638 | 0.0 | 0.3638 |
|
64 |
+
| 0.0882 | 6.67 | 160 | 0.0746 | 0.0833 | 0.1665 | 0.1665 | nan | 0.1665 | 0.0 | 0.1665 |
|
65 |
+
| 0.0778 | 7.5 | 180 | 0.0655 | 0.1927 | 0.3854 | 0.3854 | nan | 0.3854 | 0.0 | 0.3854 |
|
66 |
+
| 0.0672 | 8.33 | 200 | 0.0585 | 0.1327 | 0.2654 | 0.2654 | nan | 0.2654 | 0.0 | 0.2654 |
|
67 |
+
| 0.0612 | 9.17 | 220 | 0.0615 | 0.1640 | 0.3279 | 0.3279 | nan | 0.3279 | 0.0 | 0.3279 |
|
68 |
+
| 0.0611 | 10.0 | 240 | 0.0546 | 0.2466 | 0.4933 | 0.4933 | nan | 0.4933 | 0.0 | 0.4933 |
|
69 |
+
| 0.0537 | 10.83 | 260 | 0.0499 | 0.1129 | 0.2258 | 0.2258 | nan | 0.2258 | 0.0 | 0.2258 |
|
70 |
+
| 0.0504 | 11.67 | 280 | 0.0502 | 0.1857 | 0.3713 | 0.3713 | nan | 0.3713 | 0.0 | 0.3713 |
|
71 |
+
| 0.0707 | 12.5 | 300 | 0.0442 | 0.1710 | 0.3419 | 0.3419 | nan | 0.3419 | 0.0 | 0.3419 |
|
72 |
+
| 0.0508 | 13.33 | 320 | 0.0434 | 0.2003 | 0.4006 | 0.4006 | nan | 0.4006 | 0.0 | 0.4006 |
|
73 |
+
| 0.0396 | 14.17 | 340 | 0.0420 | 0.1409 | 0.2818 | 0.2818 | nan | 0.2818 | 0.0 | 0.2818 |
|
74 |
+
| 0.0395 | 15.0 | 360 | 0.0417 | 0.1640 | 0.3280 | 0.3280 | nan | 0.3280 | 0.0 | 0.3280 |
|
75 |
+
| 0.0387 | 15.83 | 380 | 0.0397 | 0.1827 | 0.3655 | 0.3655 | nan | 0.3655 | 0.0 | 0.3655 |
|
76 |
+
| 0.0458 | 16.67 | 400 | 0.0387 | 0.1582 | 0.3165 | 0.3165 | nan | 0.3165 | 0.0 | 0.3165 |
|
77 |
+
| 0.0363 | 17.5 | 420 | 0.0390 | 0.1724 | 0.3449 | 0.3449 | nan | 0.3449 | 0.0 | 0.3449 |
|
78 |
+
| 0.0401 | 18.33 | 440 | 0.0382 | 0.2018 | 0.4036 | 0.4036 | nan | 0.4036 | 0.0 | 0.4036 |
|
79 |
+
| 0.0355 | 19.17 | 460 | 0.0382 | 0.2032 | 0.4064 | 0.4064 | nan | 0.4064 | 0.0 | 0.4064 |
|
80 |
+
| 0.0447 | 20.0 | 480 | 0.0372 | 0.1908 | 0.3817 | 0.3817 | nan | 0.3817 | 0.0 | 0.3817 |
|
81 |
+
|
82 |
+
|
83 |
+
### Framework versions
|
84 |
+
|
85 |
+
- Transformers 4.28.0
|
86 |
+
- Pytorch 2.0.0+cu118
|
87 |
+
- Datasets 2.12.0
|
88 |
+
- Tokenizers 0.13.3
|