Upload README.md with huggingface_hub (#1)
Browse files- Upload README.md with huggingface_hub (8b10d48203378d24a335f61042be3d19c812f7b5)
Co-authored-by: Terry Yue Zhuo <[email protected]>
README.md
CHANGED
@@ -1,9 +1,143 @@
|
|
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
2 |
library_name: peft
|
|
|
|
|
3 |
---
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
|
|
7 |
|
|
|
8 |
|
9 |
-
|
|
|
|
1 |
+
|
2 |
---
|
3 |
+
license: bigcode-openrail-m
|
4 |
+
datasets:
|
5 |
+
- bigcode/guanaco-commits
|
6 |
+
metrics:
|
7 |
+
- code_eval
|
8 |
library_name: peft
|
9 |
+
tags:
|
10 |
+
- code
|
11 |
---
|
12 |
+
# Astraios: A Recipe for Parameter-Efficient Instruction Tuning Code Language Models
|
13 |
+
<p align="center" width="100%">
|
14 |
+
<a ><img src="https://github.com/bigcode-project/astraios/blob/main/visuals/banner.png?raw=true" alt="Astraios" style="width: 20%; min-width: 300px; display: block; margin: auto;"></a>
|
15 |
+
</p>
|
16 |
+
|
17 |
+
# Table of Contents
|
18 |
+
|
19 |
+
1. [Model Summary](#model-summary)
|
20 |
+
2. [Use](#use)
|
21 |
+
3. [Training](#training)
|
22 |
+
4. [Citation](#citation)
|
23 |
+
|
24 |
+
# Model Summary
|
25 |
+
|
26 |
+
> Astraios-AdapterP is an instruction tuned model with 15.5B parameters created by finetuning StarCoderBase on CommitPackFT & OASST as described in the Astraios paper.
|
27 |
+
|
28 |
+
- **Repository:** [bigcode-project/astraios](https://github.com/bigcode-project/astraios)
|
29 |
+
- **Paper:** [Astraios: A Recipe for Parameter Efficient Instruction Tuning Code Language Models]()
|
30 |
+
- **Languages:** 80+ Programming languages
|
31 |
+
- **✨Astraios:**
|
32 |
+
<table>
|
33 |
+
<tr>
|
34 |
+
<th>Data</t>
|
35 |
+
<td><a href=https://huggingface.co/datasets/bigcode/guanaco-commits>CommitPackFT+OASST</a></td>
|
36 |
+
<td>Filtered version of CommitPack and OASST for high-quality commit messages that resemble instructions</td>
|
37 |
+
</tr>
|
38 |
+
<tr>
|
39 |
+
<th>Model</t>
|
40 |
+
<td><a href=https://huggingface.co/collections/bigcode/astraios-1b-6576ff1b8e449026ae327c1c>Astraios-1B</a></td>
|
41 |
+
<td>Collection of StarCoderBase-1B models instruction tuned on CommitPackFT + OASST with different tuning methods</td>
|
42 |
+
</tr>
|
43 |
+
<tr>
|
44 |
+
<th></t>
|
45 |
+
<td><a href=https://huggingface.co/collections/bigcode/astraios-3b-6577127317ee44ff547252d3>Astraios-3B</a></td>
|
46 |
+
<td>Collection of StarCoderBase-3B (3B parameters) models instruction tuned on CommitPackFT + OASST with different tuning methods</td>
|
47 |
+
</tr>
|
48 |
+
<tr>
|
49 |
+
<th></t>
|
50 |
+
<td><a href=https://huggingface.co/collections/starpeft/starcoderbase-7b-650c1f028b45cfec8e72c265>Astraios-7B</a></td>
|
51 |
+
<td>Collection of StarCoderBase-7B (7B parameters) models instruction tuned on CommitPackFT + OASST with different tuning methods</td>
|
52 |
+
</tr>
|
53 |
+
<tr>
|
54 |
+
<th></t>
|
55 |
+
<td><a href=https://huggingface.co/collections/bigcode/astraios-16b-65788b7476b6de79781054cc>Astraios-16B</a></td>
|
56 |
+
<td>Collection of StarCoderBase-16B (16B parameters) models instruction tuned on CommitPackFT + OASST with different tuning methods</td>
|
57 |
+
</tr>
|
58 |
+
<tr>
|
59 |
+
<th>Evaluation</t>
|
60 |
+
<td><a href=https://huggingface.co/datasets/code_x_glue_cc_clone_detection_big_clone_bench>BigCloneBench</a></td>
|
61 |
+
<td>Dataset for clone detection; We use 2,000 samples for evaluation</td>
|
62 |
+
</tr>
|
63 |
+
<tr>
|
64 |
+
<th></t>
|
65 |
+
<td><a href=https://huggingface.co/datasets/code_x_glue_cc_defect_detection>Devign</a></td>
|
66 |
+
<td>Dataset for defect detection; We use 2,000 samples for evaluation</td>
|
67 |
+
</tr>
|
68 |
+
<tr>
|
69 |
+
<th></t>
|
70 |
+
<td><a href=https://huggingface.co/datasets/bigcode/humanevalpack>HumanEvalPack</a></td>
|
71 |
+
<td>Extension of OpenAI's HumanEval to cover 3 scenarios across 6 languages</td>
|
72 |
+
</tr>
|
73 |
+
<tr>
|
74 |
+
<th></t>
|
75 |
+
<td><a href=https://huggingface.co/datasets/RaymondLi/perturbed_humaneval>ReCode</a></td>
|
76 |
+
<td>Dataset for the robustness of code generation, covering 4 variants</td>
|
77 |
+
</tr>
|
78 |
+
<tr>
|
79 |
+
<th></t>
|
80 |
+
<td><a href=https://huggingface.co/datasets/moyix/asleep_keyboard>Asleep At The Keyboard</a></td>
|
81 |
+
<td>Datasets for security of code generation; We use DoW for evaluation</td>
|
82 |
+
</tr>
|
83 |
+
</table>
|
84 |
+
|
85 |
+
|
86 |
+
# Use
|
87 |
+
|
88 |
+
## Intended use
|
89 |
+
|
90 |
+
The model follows instructions provided in the input. You should always preface your input with "Question: " and finish it with "Answer:", for example: "Question: Please write a function in Python that performs bubble sort.
|
91 |
+
|
92 |
+
Answer:"
|
93 |
+
|
94 |
+
**Feel free to share your generations in the Community tab!**
|
95 |
+
|
96 |
+
## Generation
|
97 |
+
```python
|
98 |
+
# pip install -q transformers
|
99 |
+
# pip install -e git+https://github.com/bigcode-project/astraios#subdirectory=peft
|
100 |
+
from peft import PeftModel
|
101 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
102 |
+
|
103 |
+
peft_checkpoint = "bigcode/astraios-adapterp"
|
104 |
+
checkpoint = "bigcode/starcoderbase"
|
105 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint)
|
106 |
+
model = PeftModel.from_pretrained(model, peft_checkpoint)
|
107 |
+
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
108 |
+
|
109 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
110 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
|
111 |
+
|
112 |
+
inputs = tokenizer.encode("Question: Please write a function in Python that performs bubble sort.
|
113 |
+
|
114 |
+
Answer:", return_tensors="pt").to(device)
|
115 |
+
outputs = model.generate(inputs)
|
116 |
+
print(tokenizer.decode(outputs[0]))
|
117 |
+
```
|
118 |
+
|
119 |
+
# Training
|
120 |
+
|
121 |
+
## Model
|
122 |
+
|
123 |
+
- **Architecture:** GPT-2 model with multi-query attention and Fill-in-the-Middle objective
|
124 |
+
- **Steps:** 250k pretraining & 200 instruction tuning
|
125 |
+
- **Precision:** fp32
|
126 |
+
|
127 |
+
## Hardware
|
128 |
+
|
129 |
+
- **Pretraining:**
|
130 |
+
- **GPUs:** 512 Tesla A100
|
131 |
+
- **Training time:** 24 days
|
132 |
+
- **Instruction tuning:**
|
133 |
+
- **GPUs:** 8 Tesla A100
|
134 |
+
|
135 |
+
## Software
|
136 |
|
137 |
+
- **Orchestration:** [Megatron-LM/Transformers](https://github.com/bigcode-project/octopack#training)
|
138 |
+
- **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch)
|
139 |
|
140 |
+
# Citation
|
141 |
|
142 |
+
```bibtex
|
143 |
+
```
|