File size: 5,045 Bytes
ee6345a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch


@torch.no_grad()
def generate(
    vlm,
    samples,
    use_nucleus_sampling=False,
    num_beams=5,
    max_length=256,
    min_length=1,
    top_p=0.9,
    repetition_penalty=1.5,
    length_penalty=1.0,
    num_captions=1,
    temperature=1,
):
    if "prompt" in samples.keys():
        prompt = samples["prompt"]
    else:
        prompt = vlm.prompt

    image = samples["image"]

    bs = image.size(0)

    if isinstance(prompt, str):
        prompt = [prompt] * bs
    else:
        assert len(prompt) == bs, "The number of prompts must be equal to the batch size."

    # For TextCaps
    if "ocr_tokens" in samples.keys() and "{}" in prompt[0]:
        prompt = [p.format(', '.join(samples['ocr_tokens'][i][:30])) for i, p in enumerate(prompt)]

    query_tokens = vlm.query_tokens.expand(bs, -1, -1)
    if vlm.qformer_text_input:
        # remove ocr tokens in q_former (for eval textvqa)
        # qformer_prompt = prompt
        # qformer_prompt = ['Question: ' + qp.split(' Question: ')[1] for qp in qformer_prompt]

        text_Qformer = vlm.tokenizer(
            prompt,
            padding='longest',
            truncation=True,
            max_length=vlm.max_txt_len,
            return_tensors="pt",
        ).to(image.device)
        query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image.device)
        Qformer_atts = torch.cat([query_atts,text_Qformer.attention_mask],dim=1)

    # For video data
    if image.dim() == 5:
        inputs_t5, atts_t5 = [], []
        for j in range(image.size(2)):
            this_frame = image[:,:,j,:,:]
            with vlm.maybe_autocast():
                frame_embeds = vlm.ln_vision(vlm.visual_encoder(this_frame))
                frame_atts = torch.ones(frame_embeds.size()[:-1], dtype=torch.long).to(image.device)

            if vlm.qformer_text_input:
                frame_query_output = vlm.Qformer.bert(
                    text_Qformer.input_ids,
                    attention_mask = Qformer_atts,
                    query_embeds=query_tokens,
                    encoder_hidden_states=frame_embeds,
                    encoder_attention_mask=frame_atts,
                    return_dict=True,
                )
            else:
                frame_query_output = vlm.Qformer.bert(
                    query_embeds=query_tokens,
                    encoder_hidden_states=frame_embeds,
                    encoder_attention_mask=frame_atts,
                    return_dict=True,
                )

            frame_inputs_t5 = vlm.t5_proj(frame_query_output.last_hidden_state[:,:query_tokens.size(1),:])
            frame_atts_t5 = torch.ones(frame_inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
            inputs_t5.append(frame_inputs_t5)
            atts_t5.append(frame_atts_t5)
        inputs_t5 = torch.cat(inputs_t5, dim=1)
        atts_t5 = torch.cat(atts_t5, dim=1)
    else:
        with vlm.maybe_autocast():
            image_embeds = vlm.ln_vision(vlm.visual_encoder(image))
        image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)

        if vlm.qformer_text_input:
            query_output = vlm.Qformer.bert(
                text_Qformer.input_ids,
                attention_mask=Qformer_atts,
                query_embeds=query_tokens,
                encoder_hidden_states=image_embeds,
                encoder_attention_mask=image_atts,
                return_dict=True,
            )
        else:
            query_output = vlm.Qformer.bert(
                query_embeds=query_tokens,
                encoder_hidden_states=image_embeds,
                encoder_attention_mask=image_atts,
                return_dict=True,
            )

        inputs_t5 = vlm.t5_proj(query_output.last_hidden_state[:,:query_tokens.size(1),:])
        atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device)

    input_tokens = vlm.t5_tokenizer(
        prompt,
        padding="longest",
        return_tensors="pt"
    ).to(image.device)

    encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1)

    with vlm.maybe_autocast(dtype=torch.bfloat16):
        inputs_embeds = vlm.t5_model.encoder.embed_tokens(input_tokens.input_ids)
        inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1)

        outputs = vlm.t5_model.generate(
            return_dict_in_generate=True,
            output_scores=True,
            inputs_embeds=inputs_embeds,
            attention_mask=encoder_atts,
            do_sample=use_nucleus_sampling,
            top_p=top_p,
            temperature=temperature,
            num_beams=num_beams,
            max_new_tokens=max_length,
            min_length=min_length,
            repetition_penalty=repetition_penalty,
            length_penalty=length_penalty,
            num_return_sequences=num_captions,
        )
        output_text = vlm.t5_tokenizer.batch_decode(
            outputs.sequences, skip_special_tokens=True
        )

    return output_text, outputs.sequences_scores