File size: 5,289 Bytes
62387a0
d7692cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62387a0
12218d2
62387a0
 
1533151
62387a0
d7692cc
62387a0
d7692cc
 
62387a0
d7692cc
62387a0
d7692cc
 
 
62387a0
d7692cc
62387a0
d7692cc
62387a0
d7692cc
62387a0
d7692cc
62387a0
d7692cc
62387a0
d7692cc
62387a0
d7692cc
62387a0
d7692cc
62387a0
d7692cc
 
74593e7
62387a0
d7692cc
62387a0
d7692cc
 
 
 
62387a0
d7692cc
62387a0
d7692cc
 
 
 
 
62387a0
d7692cc
62387a0
d7692cc
 
 
 
 
62387a0
d7692cc
62387a0
d7692cc
62387a0
5279793
62387a0
78268ae
 
5279793
62387a0
5279793
62387a0
5279793
62387a0
5279793
62387a0
5279793
 
 
 
 
 
 
 
 
 
 
62387a0
8777cfb
d7692cc
62387a0
8777cfb
 
 
 
 
62387a0
d7692cc
62387a0
d7692cc
62387a0
d7692cc
5600dd2
8542505
 
5600dd2
 
 
 
 
d7692cc
62387a0
d7692cc
62387a0
d7692cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
extra_gated_heading: Access beomi/Yi-Ko-DUS on Hugging Face
extra_gated_button_content: Submit
extra_gated_fields:
  I agree to share my name, email address and username: checkbox
  I confirm that I understand this project is for research purposes only, and confirm that I agree to follow the LICENSE of this model: checkbox
language:
- en
- ko
pipeline_tag: text-generation
inference: false
tags:
- pytorch
- Yi-Ko
- 01-ai
- Yi
library_name: transformers
license: apache-2.0
---

> Update @ 2024.01.29 Released Yi-Ko(KoEN)-DUS-9B model 🎉

# **beomi/Yi-Ko-DUS-9B**

Yi-Ko-DUS model serves as DUS-applied and advanced iterations of [beomi/Yi-Ko-6B](https://huggingface.co/beomi/Yi-Ko-6B) model,
benefiting from an expanded vocabulary and the inclusion of Korean/English corpus in its further pretraining. 

Yi-Ko-DUS model operates with 9B billion parameters.

This repository focuses on the **9B** pretrained version,
which is tailored to fit the Hugging Face Transformers format,
trained after DUS method applied.

## Model Details

**Model Developers** Junbum Lee (Beomi), Taekyoon Choi (Taekyoon)

**Variations** Yi-Ko-DUS has 9B model only.

**Input** Models input text only.

**Output** Models generate text only.

**Model Architecture** 

Yi-Ko-DUS series models are an auto-regressive language model that uses an optimized transformer architecture based on Llama-2*.

<small>*Yi model architecture is based on Llama2, so it can be loaded via `LlamaForCausalLM` class on HF.</small>

|Model Name|Training Data|Params|Context Length|GQA|Trained Tokens|LR|Batch Size(per step)|
|---|---|---|---|---|---|---|---|
|Yi-Ko-DUS-9B|*A mix of Korean + English online data*|9B|4k|O|>120B|5e<sup>-5</sup>|2M tokens|

**Vocab Expansion**

| Model Name | Vocabulary Size | Description | 
| --- | --- | --- |
| Original Yi-Series | 64000 | Sentencepiece BPE |
| **Expanded Yi-Ko(DUS) Series** | 78464 | Sentencepiece BPE. Added Korean vocab and merges |

**Tokenizing "안녕하세요, 오늘은 날씨가 좋네요.ㅎㅎ"**

| Model | # of tokens | Tokens |
| --- | --- | --- |
| Original Yi-Series | 47 | `['<0xEC>', '<0x95>', '<0x88>', '<0xEB>', '<0x85>', '<0x95>', '하', '<0xEC>', '<0x84>', '<0xB8>', '<0xEC>', '<0x9A>', '<0x94>', ',', '▁', '<0xEC>', '<0x98>', '<0xA4>', '<0xEB>', '<0x8A>', '<0x98>', '은', '▁', '<0xEB>', '<0x82>', '<0xA0>', '<0xEC>', '<0x94>', '<0xA8>', '가', '▁', '<0xEC>', '<0xA2>', '<0x8B>', '<0xEB>', '<0x84>', '<0xA4>', '<0xEC>', '<0x9A>', '<0x94>', '.', '<0xE3>', '<0x85>', '<0x8E>', '<0xE3>', '<0x85>', '<0x8E>']` |
| **Expanded Yi-Ko(DUS) Series** | 10 | `['▁안녕', '하세요', ',', '▁오늘은', '▁날', '씨가', '▁좋네요', '.', 'ㅎ', 'ㅎ']` |
|<small>*Equal Korean vocab with Llama-2-Ko Series</small>||

**Tokenizing "Llama 2: Open Foundation and Fine-Tuned Chat Models"**

| Model | # of tokens | Tokens |
| --- | --- | --- |
| Original Yi-Series | 21 | `['The', '▁Y', 'i', '▁series', '▁models', '▁are', '▁large', '▁language', '▁models', '▁trained', '▁from', '▁scratch', '▁by', '▁developers', '▁at', '▁', '0', '1', '.', 'AI', '.']` |
| **Expanded Yi-Ko(DUS) Series** | 21 | `['▁The', '▁Y', 'i', '▁series', '▁models', '▁are', '▁large', '▁language', '▁models', '▁trained', '▁from', '▁scratch', '▁by', '▁developers', '▁at', '▁', '0', '1', '.', 'AI', '.']` |
|<small>*Equal Korean vocab with Llama-2-Ko Series</small>| | <small>*Since **Expanded Yi-Ko Series** prepends `_` at the beginning of the text(to ensure same tokenization for Korean sentences), it shows negilible difference for the first token on English tokenization. </small>|

# **Model Benchmark**

## 5-shot Korean Dataset Evaluation

[**KMMLU**](https://github.com/HAETAE-project/lm-evaluation-harness): 43.3514 (exact_match, kmmlu_direct)

- +2.58%p than [beomi/Yi-Ko-6B](https://huggingface.co/beomi/Yi-Ko-6B)

[**KorQuAD**](https://github.com/EleutherAI/lm-evaluation-harness/tree/polyglot): 80.8798 (exact_match)

- +3.06%p than [beomi/Yi-Ko-6B](https://huggingface.co/beomi/Yi-Ko-6B)

[**NSMC**](https://github.com/Beomi/ko-lm-evaluation-harness): 88.352 (acc)

- +0.3%p than [beomi/Yi-Ko-6B](https://huggingface.co/beomi/Yi-Ko-6B)

[**KOBEST COPA**](https://github.com/Beomi/ko-lm-evaluation-harness): 84.4831 (macro_f1)

- +3.6%p than [beomi/Yi-Ko-6B](https://huggingface.co/beomi/Yi-Ko-6B)

[**KOBEST HellaSwag**](https://github.com/Beomi/ko-lm-evaluation-harness): 52.6099 (macro_f1)

- +2.7%p than [beomi/Yi-Ko-6B](https://huggingface.co/beomi/Yi-Ko-6B)

[**Apeach: Korean HateSpeech**](https://github.com/Beomi/ko-lm-evaluation-harness): 63.4723 (macro_f1)

- +13.6%p than [beomi/Yi-Ko-6B](https://huggingface.co/beomi/Yi-Ko-6B)


## LICENSE

Apache 2.0 (for research)

> For commercial purpose,
> mailto: [email protected] to acquire Yi-Ko sereis commercial license.


## Citation

Please use this bibtex below:

```
@misc {lee_junbum_2024,
	author       = { {Lee Junbum, Choi Taekyoon} },
	title        = { Yi-Ko-DUS-9B },
	year         = 2024,
	url          = { https://huggingface.co/beomi/Yi-Ko-DUS-9B },
	doi          = { 10.57967/hf/1707 },
	publisher    = { Hugging Face }
}
```

## Acknowledgement

The training is supported by [TPU Research Cloud](https://sites.research.google/trc/) program.