beomi commited on
Commit
0a431ca
·
verified ·
1 Parent(s): 4b58769

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +111 -3
README.md CHANGED
@@ -1,5 +1,113 @@
1
- This repo is experimental Repo,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- Stay tuned when model is come with `beomi/Yi-Ko-34B`!
4
 
5
- > NOTE: Every request will be NOT accepted
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: yi-license
4
+ license_link: LICENSE
5
+ extra_gated_heading: Access beomi/Yi-Ko-34B on Hugging Face
6
+ extra_gated_button_content: Submit
7
+ extra_gated_fields:
8
+ I agree to share my name, email address and username: checkbox
9
+ I confirm that I understand this project is for research purposes only, and confirm that I agree to follow the LICENSE of this model: checkbox
10
+ language:
11
+ - en
12
+ - ko
13
+ pipeline_tag: text-generation
14
+ inference: false
15
+ tags:
16
+ - pytorch
17
+ - Yi-Ko
18
+ - 01-ai
19
+ - Yi
20
+ library_name: transformers
21
+ ---
22
 
23
+ # **beomi/Yi-Ko-34B**
24
 
25
+ Yi-Ko series models serve as advanced iterations of 01-ai/Yi models,
26
+ benefiting from an expanded vocabulary and the inclusion of Korean/English corpus in its further pretraining.
27
+ Just like its predecessor, Yi-Ko series models operate within the broad range of generative text models that stretch from 6 billion to 34 billion parameters.
28
+ This repository focuses on the **34B** pretrained version,
29
+ which is tailored to fit the Hugging Face Transformers format.
30
+ For access to the other models, feel free to consult the index provided below.
31
+
32
+ ## Model Details
33
+
34
+ **Model Developers** Junbum Lee (Beomi)
35
+
36
+ **Variations** Yi-Ko-34B will come in a range of parameter sizes — 6B and 34B — with Ko(Korean+English).
37
+
38
+ **Input** Models input text only.
39
+
40
+ **Output** Models generate text only.
41
+
42
+ **Model Architecture**
43
+
44
+ Yi-Ko series models are an auto-regressive language model that uses an optimized transformer architecture based on Llama-2*.
45
+
46
+ <small>*Yi model architecture is based on Llama2, so it can be loaded via `LlamaForCausalLM` class on HF.</small>
47
+
48
+ |Model Name|Training Data|Params|Context Length|GQA|Trained Tokens|LR|Train tokens (per batch)|
49
+ |---|---|---|---|---|---|---|---|
50
+ |Yi-Ko-34B|*A mix of Korean + English online data*|34B|4k|O|40B+|5e<sup>-5</sup>|4M|
51
+
52
+ **Vocab Expansion**
53
+
54
+ | Model Name | Vocabulary Size | Description |
55
+ | --- | --- | --- |
56
+ | Original Yi-Series | 64000 | Sentencepiece BPE |
57
+ | **Expanded Yi-Ko Series** | 78464 | Sentencepiece BPE. Added Korean vocab and merges |
58
+
59
+ **Tokenizing "안녕하세요, 오늘은 날씨가 좋네요.ㅎㅎ"**
60
+
61
+ | Model | # of tokens | Tokens |
62
+ | --- | --- | --- |
63
+ | Original Yi-Series | 47 | `['<0xEC>', '<0x95>', '<0x88>', '<0xEB>', '<0x85>', '<0x95>', '하', '<0xEC>', '<0x84>', '<0xB8>', '<0xEC>', '<0x9A>', '<0x94>', ',', '▁', '<0xEC>', '<0x98>', '<0xA4>', '<0xEB>', '<0x8A>', '<0x98>', '은', '▁', '<0xEB>', '<0x82>', '<0xA0>', '<0xEC>', '<0x94>', '<0xA8>', '가', '▁', '<0xEC>', '<0xA2>', '<0x8B>', '<0xEB>', '<0x84>', '<0xA4>', '<0xEC>', '<0x9A>', '<0x94>', '.', '<0xE3>', '<0x85>', '<0x8E>', '<0xE3>', '<0x85>', '<0x8E>']` |
64
+ | **Expanded Yi-Ko Series** | 10 | `['▁안녕', '하세요', ',', '▁오늘은', '▁날', '씨가', '▁좋네요', '.', 'ㅎ', 'ㅎ']` |
65
+ |<small>*Equal Korean vocab with Llama-2-Ko Series</small>||
66
+
67
+ **Tokenizing "Llama 2: Open Foundation and Fine-Tuned Chat Models"**
68
+
69
+ | Model | # of tokens | Tokens |
70
+ | --- | --- | --- |
71
+ | Original Yi-Series | 21 | `['The', '▁Y', 'i', '▁series', '▁models', '▁are', '▁large', '▁language', '▁models', '▁trained', '▁from', '▁scratch', '▁by', '▁developers', '▁at', '▁', '0', '1', '.', 'AI', '.']` |
72
+ | **Expanded Yi-Ko Series** | 21 | `['▁The', '▁Y', 'i', '▁series', '▁models', '▁are', '▁large', '▁language', '▁models', '▁trained', '▁from', '▁scratch', '▁by', '▁developers', '▁at', '▁', '0', '1', '.', 'AI', '.']` |
73
+ |<small>*Equal Korean vocab with Llama-2-Ko Series</small>| | <small>*Since **Expanded Yi-Ko Series** prepends `_` at the beginning of the text(to ensure same tokenization for Korean sentences), it shows negilible difference for the first token on English tokenization. </small>|
74
+
75
+ # **Model Benchmark**
76
+
77
+ ## LM Eval Harness - Korean (polyglot branch)
78
+
79
+ | Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
80
+ |----------------|------:|------|-----:|--------|-----:|---|------|
81
+ |**kmmlu_direct**|N/A |none | 5|exact_match|**0.5027**|± |0.1019|
82
+ |kobest_boolq | 1|none | 5|acc |0.9202|± |0.0072|
83
+ | | |none | 5|f1 |0.9202|± |N/A |
84
+ |kobest_copa | 1|none | 5|acc |0.8480|± |0.0114|
85
+ | | |none | 5|f1 |0.8479|± |N/A |
86
+ |kobest_hellaswag| 1|none | 5|acc |0.5320|± |0.0223|
87
+ | | |none | 5|f1 |0.5281|± |N/A |
88
+ | | |none | 5|acc_norm|0.6340|± |0.0216|
89
+ |kobest_sentineg | 1|none | 5|acc |0.9874|± |0.0056|
90
+ | | |none | 5|f1 |0.9874|± |N/A |
91
+ |haerae |N/A |none | 5|acc |0.7965|± |0.0116|
92
+ | | |none | 5|acc_norm|0.7965|± |0.0116|
93
+ | - haerae_general_knowledge | 1|none | 5|acc |0.5114|± |0.0378|
94
+ | | |none | 5|acc_norm|0.5114|± |0.0378|
95
+ | - haerae_history | 1|none | 5|acc |0.8511|± |0.0260|
96
+ | | |none | 5|acc_norm|0.8511|± |0.0260|
97
+ | - haerae_loan_word | 1|none | 5|acc |0.8402|± |0.0283|
98
+ | | |none | 5|acc_norm|0.8402|± |0.0283|
99
+ | - haerae_rare_word | 1|none | 5|acc |0.8642|± |0.0170|
100
+ | | |none | 5|acc_norm|0.8642|± |0.0170|
101
+ | - haerae_standard_nomenclature| 1|none | 5|acc |0.8301|± |0.0305|
102
+ | | |none | 5|acc_norm|0.8301|± |0.0305|
103
+
104
+ ## LICENSE
105
+
106
+ Apache 2.0
107
+
108
+ ## Citation
109
+
110
+
111
+ ## Acknowledgement
112
+
113
+ The training is supported by [TPU Research Cloud](https://sites.research.google/trc/) program.