Upload ZettHypernet
Browse files- config.json +17 -16
- configuration_hypernet.py +56 -0
- model.safetensors +3 -0
- modeling_hypernet.py +267 -0
config.json
CHANGED
@@ -1,12 +1,15 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
-
"
|
5 |
],
|
6 |
-
"attention_bias": false,
|
7 |
"attention_dropout": 0.0,
|
8 |
-
"
|
9 |
-
|
|
|
|
|
|
|
|
|
10 |
"hidden_act": "silu",
|
11 |
"hidden_size": 4096,
|
12 |
"hn_add_inter_token_attention": false,
|
@@ -21,7 +24,7 @@
|
|
21 |
"hn_language_adapter_bottleneck_dim": 0,
|
22 |
"hn_model_name_or_path": "roberta-base",
|
23 |
"hn_model_type": "roberta",
|
24 |
-
"hn_n_extra_tokens":
|
25 |
"hn_n_inter_token_blocks": 16,
|
26 |
"hn_n_layers": 3,
|
27 |
"hn_num_attention_heads": 32,
|
@@ -31,24 +34,22 @@
|
|
31 |
"hn_surface_maxlen": 7,
|
32 |
"initializer_range": 0.02,
|
33 |
"intermediate_size": 14336,
|
34 |
-
"max_position_embeddings":
|
35 |
-
"model_type": "llama",
|
36 |
"n_embd": 4096,
|
37 |
"n_langs": 7,
|
38 |
-
"name": "v7:
|
39 |
"num_attention_heads": 32,
|
40 |
"num_hidden_layers": 32,
|
41 |
"num_key_value_heads": 8,
|
42 |
-
"original_vocab_size":
|
43 |
-
"pad_token_id":
|
44 |
-
"pretraining_tp": 1,
|
45 |
"rms_norm_eps": 1e-05,
|
46 |
-
"
|
47 |
-
"rope_theta": 500000.0,
|
48 |
"separate_out_embeddings": true,
|
|
|
49 |
"tie_word_embeddings": false,
|
50 |
-
"torch_dtype": "
|
51 |
-
"transformers_version": "4.
|
52 |
"use_cache": true,
|
53 |
"use_unigram_bias": true,
|
54 |
"vocab_size": 32896
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "mistralai/Mistral-7B-v0.1",
|
3 |
"architectures": [
|
4 |
+
"ZettHypernet"
|
5 |
],
|
|
|
6 |
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_hypernet.ZettHypernetConfig",
|
9 |
+
"AutoModel": "modeling_hypernet.ZettHypernet"
|
10 |
+
},
|
11 |
+
"bos_token_id": 1,
|
12 |
+
"eos_token_id": 2,
|
13 |
"hidden_act": "silu",
|
14 |
"hidden_size": 4096,
|
15 |
"hn_add_inter_token_attention": false,
|
|
|
24 |
"hn_language_adapter_bottleneck_dim": 0,
|
25 |
"hn_model_name_or_path": "roberta-base",
|
26 |
"hn_model_type": "roberta",
|
27 |
+
"hn_n_extra_tokens": 522,
|
28 |
"hn_n_inter_token_blocks": 16,
|
29 |
"hn_n_layers": 3,
|
30 |
"hn_num_attention_heads": 32,
|
|
|
34 |
"hn_surface_maxlen": 7,
|
35 |
"initializer_range": 0.02,
|
36 |
"intermediate_size": 14336,
|
37 |
+
"max_position_embeddings": 32768,
|
|
|
38 |
"n_embd": 4096,
|
39 |
"n_langs": 7,
|
40 |
+
"name": "v7:mistral7b_en+code:lw=0.5_long",
|
41 |
"num_attention_heads": 32,
|
42 |
"num_hidden_layers": 32,
|
43 |
"num_key_value_heads": 8,
|
44 |
+
"original_vocab_size": 32000,
|
45 |
+
"pad_token_id": 2,
|
|
|
46 |
"rms_norm_eps": 1e-05,
|
47 |
+
"rope_theta": 10000.0,
|
|
|
48 |
"separate_out_embeddings": true,
|
49 |
+
"sliding_window": 4096,
|
50 |
"tie_word_embeddings": false,
|
51 |
+
"torch_dtype": "float32",
|
52 |
+
"transformers_version": "4.42.3",
|
53 |
"use_cache": true,
|
54 |
"use_unigram_bias": true,
|
55 |
"vocab_size": 32896
|
configuration_hypernet.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
class ZettHypernetConfig(PretrainedConfig):
|
4 |
+
def __init__(
|
5 |
+
self,
|
6 |
+
hn_model_name_or_path: str = "roberta-base",
|
7 |
+
hn_surface_maxlen: int = 16,
|
8 |
+
hn_n_layers: int = 3,
|
9 |
+
n_embd: int = 768,
|
10 |
+
hn_hidden_size: int = None,
|
11 |
+
hn_intermediate_size: int = None,
|
12 |
+
hn_rescale_embeddings: bool = False,
|
13 |
+
use_unigram_bias: bool = False,
|
14 |
+
hn_embed_target_priors: bool = False,
|
15 |
+
hn_add_inter_token_attention: bool = False,
|
16 |
+
hn_inter_token_attention_bias_by_priors: bool = False,
|
17 |
+
hn_inter_token_attention_bias_scaler: float = 1.0,
|
18 |
+
hn_n_inter_token_blocks: int = 16,
|
19 |
+
hn_language_adapter_bottleneck_dim: int = 0,
|
20 |
+
hn_embed_using_source_embeddings: bool = False,
|
21 |
+
hn_concat_last_hidden_state: bool = False,
|
22 |
+
hn_single_head: bool = False,
|
23 |
+
hn_predict_bias: bool = True,
|
24 |
+
hn_num_attention_heads: int = None,
|
25 |
+
hn_embed_lang_id: bool = False,
|
26 |
+
hn_model_type: str = "roberta",
|
27 |
+
n_langs: int = None, # set in train.py
|
28 |
+
**kwargs
|
29 |
+
):
|
30 |
+
super().__init__(**kwargs)
|
31 |
+
|
32 |
+
self.model_type = "zett_hypernetwork"
|
33 |
+
self.hn_model_name_or_path = hn_model_name_or_path
|
34 |
+
self.hn_surface_maxlen = hn_surface_maxlen
|
35 |
+
self.hn_n_layers = hn_n_layers
|
36 |
+
self.n_embd = n_embd
|
37 |
+
self.hn_hidden_size = hn_hidden_size
|
38 |
+
self.hn_intermediate_size = hn_intermediate_size
|
39 |
+
self.hn_rescale_embeddings = hn_rescale_embeddings
|
40 |
+
self.use_unigram_bias = use_unigram_bias
|
41 |
+
self.hn_embed_target_priors = hn_embed_target_priors
|
42 |
+
self.hn_add_inter_token_attention = hn_add_inter_token_attention
|
43 |
+
self.hn_inter_token_attention_bias_by_priors = (
|
44 |
+
hn_inter_token_attention_bias_by_priors
|
45 |
+
)
|
46 |
+
self.hn_inter_token_attention_bias_scaler = hn_inter_token_attention_bias_scaler
|
47 |
+
self.hn_n_inter_token_blocks = hn_n_inter_token_blocks
|
48 |
+
self.hn_language_adapter_bottleneck_dim = hn_language_adapter_bottleneck_dim
|
49 |
+
self.hn_embed_using_source_embeddings = hn_embed_using_source_embeddings
|
50 |
+
self.hn_concat_last_hidden_state = hn_concat_last_hidden_state
|
51 |
+
self.hn_single_head = hn_single_head
|
52 |
+
self.hn_predict_bias = hn_predict_bias
|
53 |
+
self.hn_num_attention_heads = hn_num_attention_heads
|
54 |
+
self.hn_embed_lang_id = hn_embed_lang_id
|
55 |
+
self.hn_model_type = hn_model_type
|
56 |
+
self.n_langs = n_langs
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58ff19794dc856869f1c6a52df63ad0573d1081a2861929e7c48ae1634481af5
|
3 |
+
size 2710971844
|
modeling_hypernet.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .configuration_hypernet import ZettHypernetConfig
|
2 |
+
from transformers import PreTrainedModel, RobertaConfig, RobertaModel
|
3 |
+
from functools import partial
|
4 |
+
|
5 |
+
from torch import nn as nn
|
6 |
+
import torch
|
7 |
+
from torch.nn import functional as F
|
8 |
+
|
9 |
+
class Rescaler(nn.Module):
|
10 |
+
def __init__(self, dim: int):
|
11 |
+
super().__init__()
|
12 |
+
|
13 |
+
self.dim = dim
|
14 |
+
|
15 |
+
self.w = nn.Parameter(torch.ones((1, self.dim)), requires_grad=False)
|
16 |
+
self.b = nn.Parameter(torch.ones((1, self.dim)), requires_grad=False)
|
17 |
+
|
18 |
+
def __call__(self, x):
|
19 |
+
return self.w * x + self.b
|
20 |
+
|
21 |
+
|
22 |
+
class ProjectorBlock(nn.Module):
|
23 |
+
def __init__(self, input_dim: int, dim: int, intermediate_dim: int):
|
24 |
+
super().__init__()
|
25 |
+
|
26 |
+
self.input_dim = input_dim
|
27 |
+
self.dim = dim
|
28 |
+
self.intermediate_dim = intermediate_dim
|
29 |
+
|
30 |
+
self.dense1 = nn.Linear(self.input_dim, self.intermediate_dim)
|
31 |
+
self.dense2 = nn.Linear(self.intermediate_dim, self.dim)
|
32 |
+
|
33 |
+
self.ln = nn.LayerNorm(self.dim, eps=1e-6)
|
34 |
+
|
35 |
+
def __call__(self, x):
|
36 |
+
h = F.gelu(
|
37 |
+
self.dense2(F.gelu(self.dense1(x), approximate="tanh")),
|
38 |
+
approximate="tanh",
|
39 |
+
)
|
40 |
+
return self.ln(h + x)
|
41 |
+
|
42 |
+
|
43 |
+
class ZettHypernet(PreTrainedModel):
|
44 |
+
config_class = ZettHypernetConfig
|
45 |
+
|
46 |
+
def __init__(self, config: ZettHypernetConfig):
|
47 |
+
super().__init__(config)
|
48 |
+
|
49 |
+
self.config = config
|
50 |
+
self.has_separate_out_embeddings = getattr(
|
51 |
+
self.config, "separate_out_embeddings", False
|
52 |
+
)
|
53 |
+
|
54 |
+
if self.config.hn_embed_lang_id:
|
55 |
+
self.lang_embeddings = nn.Embedding(
|
56 |
+
self.config.n_langs, self.config.hn_hidden_size
|
57 |
+
)
|
58 |
+
|
59 |
+
if self.has_separate_out_embeddings:
|
60 |
+
n_in_embd = self.config.n_embd * 2
|
61 |
+
n_out_embd = self.config.n_embd
|
62 |
+
else:
|
63 |
+
n_in_embd = self.config.n_embd
|
64 |
+
n_out_embd = self.config.n_embd
|
65 |
+
|
66 |
+
if self.config.hn_model_type == "roberta":
|
67 |
+
config = RobertaConfig.from_pretrained(
|
68 |
+
self.config.hn_model_name_or_path
|
69 |
+
)
|
70 |
+
config.num_hidden_layers = self.config.hn_n_layers
|
71 |
+
config.hidden_size = self.config.hn_hidden_size
|
72 |
+
config.intermediate_size = self.config.hn_intermediate_size
|
73 |
+
if getattr(self.config, "hn_num_attention_heads", None) is None:
|
74 |
+
self.config.hn_num_attention_heads = self.config.hn_hidden_size // 64
|
75 |
+
config.num_attention_heads = self.config.hn_num_attention_heads
|
76 |
+
self.embed_init_range = config.initializer_range
|
77 |
+
module_class = partial(RobertaModel, add_pooling_layer=False)
|
78 |
+
elif self.config.hn_model_type == "t5":
|
79 |
+
raise NotImplementedError()
|
80 |
+
|
81 |
+
if self.config.hn_embed_using_source_embeddings:
|
82 |
+
# do not need to alloc embeddings since inputs_embeds is always used
|
83 |
+
config.vocab_size = self.config.pad_token_id + 1
|
84 |
+
|
85 |
+
if (
|
86 |
+
self.config.hn_add_inter_token_attention
|
87 |
+
or self.config.hn_embed_target_priors
|
88 |
+
):
|
89 |
+
raise NotImplementedError()
|
90 |
+
|
91 |
+
self.pad_token_id = self.config.pad_token_id
|
92 |
+
assert self.pad_token_id is not None
|
93 |
+
self.model = module_class(config)
|
94 |
+
|
95 |
+
# need at least one embedding
|
96 |
+
self.fallback_embeddings = nn.Embedding(
|
97 |
+
max(self.config.hn_n_extra_tokens, 1), n_in_embd
|
98 |
+
)
|
99 |
+
|
100 |
+
if self.config.hn_embed_using_source_embeddings:
|
101 |
+
self.input_projection = nn.Sequential(
|
102 |
+
*[
|
103 |
+
nn.Linear(n_in_embd, self.config.hn_hidden_size),
|
104 |
+
ProjectorBlock(
|
105 |
+
self.config.hn_hidden_size,
|
106 |
+
self.config.hn_hidden_size,
|
107 |
+
self.config.hn_intermediate_size,
|
108 |
+
),
|
109 |
+
]
|
110 |
+
)
|
111 |
+
|
112 |
+
if self.config.hn_single_head:
|
113 |
+
self.output_projection = nn.Sequential(
|
114 |
+
*[
|
115 |
+
ProjectorBlock(
|
116 |
+
self.config.hn_hidden_size,
|
117 |
+
self.config.hn_hidden_size,
|
118 |
+
self.config.hn_intermediate_size,
|
119 |
+
),
|
120 |
+
nn.Linear(self.config.hn_hidden_size, n_in_embd),
|
121 |
+
]
|
122 |
+
)
|
123 |
+
else:
|
124 |
+
self.output_projection = nn.Sequential(
|
125 |
+
*[
|
126 |
+
ProjectorBlock(
|
127 |
+
self.config.hn_hidden_size,
|
128 |
+
self.config.hn_hidden_size,
|
129 |
+
self.config.hn_intermediate_size,
|
130 |
+
),
|
131 |
+
nn.Linear(self.config.hn_hidden_size, n_out_embd),
|
132 |
+
]
|
133 |
+
)
|
134 |
+
if self.has_separate_out_embeddings:
|
135 |
+
self.output_projection_out = nn.Sequential(
|
136 |
+
*[
|
137 |
+
ProjectorBlock(
|
138 |
+
self.config.hn_hidden_size,
|
139 |
+
self.config.hn_hidden_size,
|
140 |
+
self.config.hn_intermediate_size,
|
141 |
+
),
|
142 |
+
nn.Linear(self.config.hn_hidden_size, self.config.n_embd),
|
143 |
+
]
|
144 |
+
)
|
145 |
+
|
146 |
+
if self.config.hn_rescale_embeddings:
|
147 |
+
self.in_scaler = Rescaler(n_in_embd)
|
148 |
+
self.scaler = Rescaler(n_out_embd)
|
149 |
+
|
150 |
+
if self.has_separate_out_embeddings:
|
151 |
+
self.out_scaler = Rescaler(self.config.n_embd)
|
152 |
+
|
153 |
+
if getattr(self.config, "hn_predict_bias", False):
|
154 |
+
self.bias_projection = nn.Linear(self.config.hn_hidden_size, 1)
|
155 |
+
|
156 |
+
def __call__(
|
157 |
+
self,
|
158 |
+
target_surface_forms,
|
159 |
+
target_priors=None,
|
160 |
+
source_embeddings=None,
|
161 |
+
lang_index=None,
|
162 |
+
deterministic: bool = True,
|
163 |
+
):
|
164 |
+
if target_priors is not None:
|
165 |
+
raise NotImplementedError()
|
166 |
+
|
167 |
+
if not self.config.hn_embed_using_source_embeddings:
|
168 |
+
raise NotImplementedError()
|
169 |
+
|
170 |
+
use_fallback = target_surface_forms >= self.config.original_vocab_size
|
171 |
+
|
172 |
+
main_ids = torch.minimum(
|
173 |
+
target_surface_forms, torch.tensor(self.config.original_vocab_size - 1, device=self.device)
|
174 |
+
)
|
175 |
+
fallback_ids = torch.maximum(
|
176 |
+
target_surface_forms - self.config.original_vocab_size, torch.tensor(0, device=self.device)
|
177 |
+
)
|
178 |
+
|
179 |
+
source_embeds = F.embedding(main_ids, weight=source_embeddings)
|
180 |
+
|
181 |
+
if self.config.hn_rescale_embeddings:
|
182 |
+
source_embeds = self.in_scaler(source_embeds)
|
183 |
+
|
184 |
+
inputs_embeds = torch.where(
|
185 |
+
use_fallback[..., None],
|
186 |
+
self.fallback_embeddings(fallback_ids),
|
187 |
+
source_embeds,
|
188 |
+
)
|
189 |
+
inputs_embeds = self.input_projection(inputs_embeds)
|
190 |
+
attention_mask = target_surface_forms != self.pad_token_id
|
191 |
+
|
192 |
+
if self.config.hn_embed_lang_id:
|
193 |
+
lang_embedding = self.lang_embeddings(lang_index).squeeze()
|
194 |
+
# position embed and type embed are added afterwards only in PT version so we need to subtract them here
|
195 |
+
lang_embedding -= self.model.embeddings.token_type_embeddings(
|
196 |
+
torch.tensor(0, device=self.device)
|
197 |
+
) + self.model.embeddings.position_embeddings(
|
198 |
+
torch.tensor(attention_mask.shape[1], device=self.device)
|
199 |
+
)
|
200 |
+
|
201 |
+
lang_embedding = lang_embedding[None, None, :].expand(
|
202 |
+
inputs_embeds.shape[0], -1, -1
|
203 |
+
)
|
204 |
+
|
205 |
+
inputs_embeds = torch.cat(
|
206 |
+
[
|
207 |
+
inputs_embeds,
|
208 |
+
lang_embedding,
|
209 |
+
],
|
210 |
+
axis=1,
|
211 |
+
)
|
212 |
+
attention_mask = torch.cat(
|
213 |
+
[
|
214 |
+
attention_mask,
|
215 |
+
torch.ones(lang_embedding.shape[:-1], dtype=torch.bool, device=self.device),
|
216 |
+
],
|
217 |
+
axis=1,
|
218 |
+
)
|
219 |
+
|
220 |
+
position_ids = torch.broadcast_to(
|
221 |
+
torch.arange(torch.atleast_2d(attention_mask).shape[-1], device=self.device),
|
222 |
+
attention_mask.shape,
|
223 |
+
)
|
224 |
+
|
225 |
+
hidden_states = self.model(
|
226 |
+
inputs_embeds=inputs_embeds,
|
227 |
+
attention_mask=attention_mask,
|
228 |
+
position_ids=position_ids,
|
229 |
+
).last_hidden_state
|
230 |
+
|
231 |
+
if self.config.hn_concat_last_hidden_state:
|
232 |
+
hidden_states = hidden_states.reshape(target_surface_forms.shape[0], -1)
|
233 |
+
else:
|
234 |
+
hidden_states = hidden_states[:, 0]
|
235 |
+
|
236 |
+
predicted_embeddings = self.output_projection(hidden_states)
|
237 |
+
|
238 |
+
if self.config.hn_single_head:
|
239 |
+
predicted_embeddings_in = predicted_embeddings[..., : self.config.n_embd]
|
240 |
+
|
241 |
+
if self.has_separate_out_embeddings:
|
242 |
+
predicted_embeddings_out = predicted_embeddings[
|
243 |
+
..., self.config.n_embd :
|
244 |
+
]
|
245 |
+
else:
|
246 |
+
predicted_embeddings_out = None
|
247 |
+
else:
|
248 |
+
predicted_embeddings_in = predicted_embeddings
|
249 |
+
if self.has_separate_out_embeddings:
|
250 |
+
predicted_embeddings_out = self.output_projection_out(hidden_states)
|
251 |
+
else:
|
252 |
+
predicted_embeddings_out = None
|
253 |
+
|
254 |
+
if self.config.hn_rescale_embeddings:
|
255 |
+
predicted_embeddings_in = self.scaler(predicted_embeddings_in)
|
256 |
+
|
257 |
+
if predicted_embeddings_out is not None:
|
258 |
+
predicted_embeddings_out = self.out_scaler(predicted_embeddings_out)
|
259 |
+
|
260 |
+
if getattr(self.config, "hn_predict_bias", False):
|
261 |
+
predicted_bias = self.bias_projection(hidden_states)[..., 0]
|
262 |
+
else:
|
263 |
+
predicted_bias = torch.zeros_like(
|
264 |
+
target_surface_forms[..., 0], dtype=self.dtype
|
265 |
+
)
|
266 |
+
|
267 |
+
return predicted_embeddings_in, predicted_embeddings_out, predicted_bias
|