File size: 4,699 Bytes
43e383d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---
library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-large-finetuned-kinetics
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: CTMAE-P2-V3-3G-S2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# CTMAE-P2-V3-3G-S2

This model is a fine-tuned version of [MCG-NJU/videomae-large-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-large-finetuned-kinetics) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9771
- Accuracy: 0.8

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 3250

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 0.6262        | 0.0203  | 66   | 0.8422          | 0.4      |
| 0.5961        | 1.0203  | 132  | 0.9177          | 0.4      |
| 0.6691        | 2.0203  | 198  | 0.8617          | 0.4      |
| 0.6242        | 3.0203  | 264  | 0.9506          | 0.4      |
| 0.631         | 4.0203  | 330  | 0.7678          | 0.4      |
| 0.6747        | 5.0203  | 396  | 0.6632          | 0.6      |
| 0.6345        | 6.0203  | 462  | 0.7091          | 0.5556   |
| 0.6357        | 7.0203  | 528  | 1.0969          | 0.5111   |
| 0.4717        | 8.0203  | 594  | 0.6719          | 0.6444   |
| 0.827         | 9.0203  | 660  | 0.5489          | 0.7778   |
| 0.3107        | 10.0203 | 726  | 0.7150          | 0.6889   |
| 0.3366        | 11.0203 | 792  | 0.7248          | 0.7111   |
| 0.8919        | 12.0203 | 858  | 0.6667          | 0.7778   |
| 0.4823        | 13.0203 | 924  | 2.1050          | 0.4222   |
| 0.3742        | 14.0203 | 990  | 1.0017          | 0.5778   |
| 0.3399        | 15.0203 | 1056 | 1.5679          | 0.5556   |
| 0.6571        | 16.0203 | 1122 | 1.3521          | 0.6      |
| 0.2434        | 17.0203 | 1188 | 0.7812          | 0.7778   |
| 0.5967        | 18.0203 | 1254 | 0.9575          | 0.6889   |
| 0.1982        | 19.0203 | 1320 | 1.1721          | 0.6667   |
| 0.2631        | 20.0203 | 1386 | 2.5733          | 0.4667   |
| 0.3235        | 21.0203 | 1452 | 0.9771          | 0.8      |
| 0.1786        | 22.0203 | 1518 | 1.1978          | 0.7111   |
| 0.1352        | 23.0203 | 1584 | 0.8692          | 0.7778   |
| 0.1709        | 24.0203 | 1650 | 1.1424          | 0.7556   |
| 0.0873        | 25.0203 | 1716 | 1.8760          | 0.6222   |
| 0.1418        | 26.0203 | 1782 | 1.0964          | 0.8      |
| 0.0075        | 27.0203 | 1848 | 1.9130          | 0.6222   |
| 0.4534        | 28.0203 | 1914 | 1.1176          | 0.7778   |
| 0.0019        | 29.0203 | 1980 | 2.0684          | 0.6222   |
| 0.4098        | 30.0203 | 2046 | 1.9198          | 0.6667   |
| 0.0006        | 31.0203 | 2112 | 1.2724          | 0.7333   |
| 0.1891        | 32.0203 | 2178 | 1.8213          | 0.6444   |
| 0.0604        | 33.0203 | 2244 | 2.6845          | 0.5556   |
| 0.104         | 34.0203 | 2310 | 2.7468          | 0.6222   |
| 0.028         | 35.0203 | 2376 | 1.4458          | 0.7333   |
| 0.2479        | 36.0203 | 2442 | 2.1613          | 0.6222   |
| 0.0967        | 37.0203 | 2508 | 1.3895          | 0.7778   |
| 0.0668        | 38.0203 | 2574 | 2.0147          | 0.6667   |
| 0.0004        | 39.0203 | 2640 | 1.5766          | 0.6889   |
| 0.0027        | 40.0203 | 2706 | 2.3533          | 0.6444   |
| 0.1436        | 41.0203 | 2772 | 2.1496          | 0.6444   |
| 0.0327        | 42.0203 | 2838 | 2.2866          | 0.6444   |
| 0.0349        | 43.0203 | 2904 | 2.2496          | 0.6667   |
| 0.1178        | 44.0203 | 2970 | 1.8929          | 0.6889   |
| 0.0001        | 45.0203 | 3036 | 1.9030          | 0.7111   |
| 0.1289        | 46.0203 | 3102 | 1.9212          | 0.6889   |
| 0.137         | 47.0203 | 3168 | 1.6077          | 0.7556   |
| 0.0004        | 48.0203 | 3234 | 1.7398          | 0.7333   |
| 0.0001        | 49.0049 | 3250 | 1.7423          | 0.7333   |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.0.1+cu117
- Datasets 3.0.1
- Tokenizers 0.20.0