Pushed PPO trained agent for LunarLender.
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 276.12 +/- 12.91
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f317f7da040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f317f7da0d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f317f7da160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f317f7da1f0>", "_build": "<function ActorCriticPolicy._build at 0x7f317f7da280>", "forward": "<function ActorCriticPolicy.forward at 0x7f317f7da310>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f317f7da3a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f317f7da430>", "_predict": "<function ActorCriticPolicy._predict at 0x7f317f7da4c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f317f7da550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f317f7da5e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f317f7da670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f317f853780>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675174160316691505, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGY+7zx7LoS69dvhMurqajA2PRc6hfR6swAAgD8AAIA/rWoRvnE6crs2mro2ToIANMbmoDxuYd+1AACAPwAAgD/mECM+W6O9PVUxX77xJ2O+FxN8PFZziz0AAAAAAAAAALOyXr27tYE9kNHwvIUIJL4GvQE9HLkWvgAAAAAAAAAAABhWPIZnUD9tdB29bZzPvm80vrvCQBq6AAAAAAAAAACzRdu9Yt+pPm2SVj7sZ6W+FYO+PAhguT0AAAAAAAAAAPPHxr1wpbU+h32BPq+nor4QFZM85cw7PAAAAAAAAAAAA3Bnvu7DZD9bSpq9K1PSvlMPjb7SxBE9AAAAAAAAAAAA4EU7j3pxuo1o7TbbZDsyruYXO+pECLYAAIA/AACAPxryar0EuOc+yLrrPbHvvL6QqvQ8mAfRPQAAAAAAAAAADf+mPV2uyz6bJAS+ENbGvuYlCj2HsoY8AAAAAAAAAABgFRM+qCmgPyLBID9KwBm/rktNPvX3dj4AAAAAAAAAAOb3Tb1M/CE/OrMJPjOf/L5xRrm6zmmFPAAAAAAAAAAAs20dvSkALLpeFQ81ZCiRMCZ3+rhFNGS0AACAPwAAgD8a8RK91zNOubjVWjtxkN42EZqtujOL3TUAAIA/AACAP4DFR71cqRe8STjGu8opqzzDAnY9riSNvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVTRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjexKy8j8cUCUhpRSlIwBbJRL9owBdJRHQJNaY1baAWl1fZQoaAZoCWgPQwgcmrLTjx1vQJSGlFKUaBVL62gWR0CTWneUY8+zdX2UKGgGaAloD0MIthMlIVHNcECUhpRSlGgVS/9oFkdAk1tDRIBikXV9lChoBmgJaA9DCPfnoiHjH3BAlIaUUpRoFU0HAWgWR0CTW5VLSNOudX2UKGgGaAloD0MIWvENhU+xb0CUhpRSlGgVS+NoFkdAk1yF7tzCDXV9lChoBmgJaA9DCDRN2H5ytXFAlIaUUpRoFU0QAWgWR0CTXL8qWkaddX2UKGgGaAloD0MIbhgFweO5ckCUhpRSlGgVS/toFkdAk1zRP9DQaHV9lChoBmgJaA9DCN+nqtDAZXNAlIaUUpRoFU0XAWgWR0CTXzOZssQNdX2UKGgGaAloD0MIE/BrJMmfcECUhpRSlGgVTSsBaBZHQJNfiueSSvF1fZQoaAZoCWgPQwjEk93MaI5xQJSGlFKUaBVL6mgWR0CTX5+KjzqbdX2UKGgGaAloD0MIyaze4TbyckCUhpRSlGgVTW4BaBZHQJNfvXSSeRR1fZQoaAZoCWgPQwh5HtyddQFyQJSGlFKUaBVNZAFoFkdAk1/6/Zdv9HV9lChoBmgJaA9DCFtCPugZfHJAlIaUUpRoFU0SAWgWR0CTYAYyfthNdX2UKGgGaAloD0MIKjv9oC5tb0CUhpRSlGgVS/xoFkdAk2CQqRU3oHV9lChoBmgJaA9DCFFrmnecImBAlIaUUpRoFU3oA2gWR0CTYPBYFJQMdX2UKGgGaAloD0MILH++Ldgqc0CUhpRSlGgVTQkBaBZHQJNg7xMFlkJ1fZQoaAZoCWgPQwgIza57qyJvQJSGlFKUaBVL/mgWR0CTYY1q33HrdX2UKGgGaAloD0MIcJf9ulPWckCUhpRSlGgVS+doFkdAk2IDcEeQuHV9lChoBmgJaA9DCOsdboeGgnFAlIaUUpRoFU0ZAWgWR0CTYkEdvKlpdX2UKGgGaAloD0MI521sduQhcECUhpRSlGgVS+JoFkdAk2KsinpB5XV9lChoBmgJaA9DCF8IOe9/sG5AlIaUUpRoFU0OAWgWR0CTYrFKTSssdX2UKGgGaAloD0MIa7kzE0x/cECUhpRSlGgVS+FoFkdAk2LTVDrquHV9lChoBmgJaA9DCJgUH5+QPVVAlIaUUpRoFUuaaBZHQJNjanbZezF1fZQoaAZoCWgPQwh8t3njJPptQJSGlFKUaBVL5GgWR0CTZOyiVSn+dX2UKGgGaAloD0MIuFz92KSxb0CUhpRSlGgVTQwBaBZHQJNlxIg/1QJ1fZQoaAZoCWgPQwj1udqKfYBvQJSGlFKUaBVL4WgWR0CTZk9ZzPrwdX2UKGgGaAloD0MIaauSyH5acECUhpRSlGgVTXYBaBZHQJNmge2d/ax1fZQoaAZoCWgPQwhFnbmHxK5wQJSGlFKUaBVNIQFoFkdAk2agOnVG1HV9lChoBmgJaA9DCN19jo/WiXNAlIaUUpRoFU0FAWgWR0CTZt+RoysTdX2UKGgGaAloD0MIX+/+eO+BcECUhpRSlGgVTTUBaBZHQJNnRQl8gIR1fZQoaAZoCWgPQwiTG0XWmihvQJSGlFKUaBVL+WgWR0CTZ8FOO802dX2UKGgGaAloD0MI2lcepKcRckCUhpRSlGgVTT4BaBZHQJNnyo2n8891fZQoaAZoCWgPQwhck25LZIJvQJSGlFKUaBVNFQFoFkdAk2lETxoZh3V9lChoBmgJaA9DCAUWwJRBa3BAlIaUUpRoFU0OAWgWR0CTadM6ij+KdX2UKGgGaAloD0MIgQUwZSAXcUCUhpRSlGgVTTgBaBZHQJNqABPsRg91fZQoaAZoCWgPQwjJdr6f2uhwQJSGlFKUaBVL9WgWR0CTagclw97odX2UKGgGaAloD0MI+P9xwoTVb0CUhpRSlGgVTR4BaBZHQJNqE7yQPqd1fZQoaAZoCWgPQwgP1CmPboRyQJSGlFKUaBVNIgFoFkdAk2omi1y/9HV9lChoBmgJaA9DCARUOIJU61JAlIaUUpRoFUupaBZHQJNqst+TeO51fZQoaAZoCWgPQwhvhEVFnOJuQJSGlFKUaBVNlAFoFkdAk2rqHGjsU3V9lChoBmgJaA9DCGluhbAa5G9AlIaUUpRoFU0VAWgWR0CTfhi3XqZ/dX2UKGgGaAloD0MIMucZ+1JvcECUhpRSlGgVTQABaBZHQJN+VTXJ5mh1fZQoaAZoCWgPQwiRtBt9TPBxQJSGlFKUaBVNBAFoFkdAk38QDq4YrXV9lChoBmgJaA9DCPziUpU2eHJAlIaUUpRoFUv4aBZHQJN/H1mJ3xF1fZQoaAZoCWgPQwg2ct2UcvpxQJSGlFKUaBVL42gWR0CTf2slb/wRdX2UKGgGaAloD0MIjGZl+9CfcUCUhpRSlGgVS/loFkdAk3+JCBwuNHV9lChoBmgJaA9DCFOWIY712nBAlIaUUpRoFU0jAWgWR0CTf+e0Xxe+dX2UKGgGaAloD0MIhV5/Ep96cECUhpRSlGgVTQsBaBZHQJOAV8b70nR1fZQoaAZoCWgPQwhI3jmUIeBuQJSGlFKUaBVL32gWR0CTgJ+TeO4odX2UKGgGaAloD0MIryZPWY2OcUCUhpRSlGgVS9hoFkdAk4Dj5O8CgnV9lChoBmgJaA9DCN481SG3RXFAlIaUUpRoFUviaBZHQJOBSgElme11fZQoaAZoCWgPQwj+tFGdjjpyQJSGlFKUaBVL8mgWR0CTgceKbaysdX2UKGgGaAloD0MIWkV/aOYVcUCUhpRSlGgVS/toFkdAk4HbUPQOWnV9lChoBmgJaA9DCIJzRpS2g3BAlIaUUpRoFUvtaBZHQJOCSN6w+t91fZQoaAZoCWgPQwjcSq/NxkxwQJSGlFKUaBVNEwFoFkdAk4J2kWRA8nV9lChoBmgJaA9DCLJGPURjqXFAlIaUUpRoFUvaaBZHQJODLcVQAMl1fZQoaAZoCWgPQwiSyhRzkMNvQJSGlFKUaBVNHAFoFkdAk4OOA3DNyHV9lChoBmgJaA9DCMOBkCxgNHJAlIaUUpRoFUvpaBZHQJOEghs67ul1fZQoaAZoCWgPQwik3lM5beByQJSGlFKUaBVL5GgWR0CThURZU1htdX2UKGgGaAloD0MIW1t4XioKcUCUhpRSlGgVTQgBaBZHQJOFSu0TlDF1fZQoaAZoCWgPQwigGcQHNnJyQJSGlFKUaBVL/WgWR0CThYJbMX7+dX2UKGgGaAloD0MIIR6Jl2fHcECUhpRSlGgVTRcBaBZHQJOGDzqbBoF1fZQoaAZoCWgPQwjrbp7qEDtzQJSGlFKUaBVL7WgWR0CThlVafSQYdX2UKGgGaAloD0MIhcyVQfV5ckCUhpRSlGgVTQEBaBZHQJOGgfKZDzB1fZQoaAZoCWgPQwjQ1VbsL8RuQJSGlFKUaBVL9mgWR0CThullbu+idX2UKGgGaAloD0MIsYf2sUJFcUCUhpRSlGgVS+JoFkdAk4gFJg9eQnV9lChoBmgJaA9DCH/1uG81iXNAlIaUUpRoFUv6aBZHQJOIE7HQyAR1fZQoaAZoCWgPQwiwAKYMnFpwQJSGlFKUaBVNEgFoFkdAk4gr4FiazHV9lChoBmgJaA9DCIgQV84eEHFAlIaUUpRoFUv8aBZHQJOIO0rsjVx1fZQoaAZoCWgPQwjeIForWiJwQJSGlFKUaBVL1WgWR0CTiLS1E3KkdX2UKGgGaAloD0MIe9tMhTi3cECUhpRSlGgVTacBaBZHQJOItPRArx11fZQoaAZoCWgPQwh96IL6ViFwQJSGlFKUaBVNBAFoFkdAk4j/ci4axXV9lChoBmgJaA9DCFmLTwFwDXFAlIaUUpRoFUvuaBZHQJOJhb9qDbt1fZQoaAZoCWgPQwgjS+ZY3ixwQJSGlFKUaBVL52gWR0CTis9qUNaydX2UKGgGaAloD0MI86s5QHDlckCUhpRSlGgVS+loFkdAk4rhKpT/AHV9lChoBmgJaA9DCBNGs7J9eXFAlIaUUpRoFUvqaBZHQJOLGdAgPmR1fZQoaAZoCWgPQwiTG0XWmoFtQJSGlFKUaBVL7WgWR0CTi/eXRgJDdX2UKGgGaAloD0MIuwm+aTpPcUCUhpRSlGgVTT8BaBZHQJOMVi4J/od1fZQoaAZoCWgPQwjwEwfQr4hwQJSGlFKUaBVNAAFoFkdAk40OSB9TgnV9lChoBmgJaA9DCOHx7V0D0XBAlIaUUpRoFU0jAWgWR0CTjSLhaTwEdX2UKGgGaAloD0MICACOPfv/cECUhpRSlGgVS+poFkdAk42I3zcynHV9lChoBmgJaA9DCF6c+GpHl3FAlIaUUpRoFUv1aBZHQJON7DO1OTJ1fZQoaAZoCWgPQwichqjCHxNwQJSGlFKUaBVL4GgWR0CTjeuVHFxXdX2UKGgGaAloD0MIEkpfCHmacECUhpRSlGgVS/hoFkdAk46DwH7gsXV9lChoBmgJaA9DCL3CgvsBgnFAlIaUUpRoFU0ZAWgWR0CTjqRbKRuCdX2UKGgGaAloD0MIWHGqtbD1b0CUhpRSlGgVS95oFkdAk47fZM+NcXV9lChoBmgJaA9DCNDRqpa0HXBAlIaUUpRoFU0eAWgWR0CTjtz/IbOvdX2UKGgGaAloD0MI6kFBKRr7ckCUhpRSlGgVTVwBaBZHQJOO6ay8jA11fZQoaAZoCWgPQwhS0Vj7O8pwQJSGlFKUaBVNQAFoFkdAk5Ba9TP0I3V9lChoBmgJaA9DCDv9oC6ScHJAlIaUUpRoFUvqaBZHQJOQd3aBZp11fZQoaAZoCWgPQwiPU3QkF4lxQJSGlFKUaBVNHQFoFkdAk5GlbqyGBXV9lChoBmgJaA9DCGLAkqtYJnJAlIaUUpRoFU0wAWgWR0CTknoA4n4PdX2UKGgGaAloD0MIrdwLzAopU0CUhpRSlGgVS8ZoFkdAk5Kh6Ww/xHV9lChoBmgJaA9DCAaCABk6k3FAlIaUUpRoFUvjaBZHQJOTBKPGQ0Z1fZQoaAZoCWgPQwiUZ14Ou3FxQJSGlFKUaBVNHgFoFkdAk5NU384xUXV9lChoBmgJaA9DCNOGw9LAIW5AlIaUUpRoFU0SAWgWR0CTk7fZmI0qdX2UKGgGaAloD0MIxVimXyK6b0CUhpRSlGgVS/loFkdAk5P+jEehf3V9lChoBmgJaA9DCNwNorWizm9AlIaUUpRoFUvwaBZHQJOU21Vo6CF1fZQoaAZoCWgPQwgJh97iYWpyQJSGlFKUaBVL/mgWR0CTlOf5k9U0dX2UKGgGaAloD0MIMpHSbJ5ocUCUhpRSlGgVTRkBaBZHQJOV5z4k/r11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:06701d7bf728f32c02b18f41e6a3620b9a5d3b1f5dd35ca1ab9209a360807bdb
|
3 |
+
size 147356
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f317f7da040>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f317f7da0d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f317f7da160>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f317f7da1f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f317f7da280>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f317f7da310>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f317f7da3a0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f317f7da430>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f317f7da4c0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f317f7da550>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f317f7da5e0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f317f7da670>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f317f853780>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1675174160316691505,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGY+7zx7LoS69dvhMurqajA2PRc6hfR6swAAgD8AAIA/rWoRvnE6crs2mro2ToIANMbmoDxuYd+1AACAPwAAgD/mECM+W6O9PVUxX77xJ2O+FxN8PFZziz0AAAAAAAAAALOyXr27tYE9kNHwvIUIJL4GvQE9HLkWvgAAAAAAAAAAABhWPIZnUD9tdB29bZzPvm80vrvCQBq6AAAAAAAAAACzRdu9Yt+pPm2SVj7sZ6W+FYO+PAhguT0AAAAAAAAAAPPHxr1wpbU+h32BPq+nor4QFZM85cw7PAAAAAAAAAAAA3Bnvu7DZD9bSpq9K1PSvlMPjb7SxBE9AAAAAAAAAAAA4EU7j3pxuo1o7TbbZDsyruYXO+pECLYAAIA/AACAPxryar0EuOc+yLrrPbHvvL6QqvQ8mAfRPQAAAAAAAAAADf+mPV2uyz6bJAS+ENbGvuYlCj2HsoY8AAAAAAAAAABgFRM+qCmgPyLBID9KwBm/rktNPvX3dj4AAAAAAAAAAOb3Tb1M/CE/OrMJPjOf/L5xRrm6zmmFPAAAAAAAAAAAs20dvSkALLpeFQ81ZCiRMCZ3+rhFNGS0AACAPwAAgD8a8RK91zNOubjVWjtxkN42EZqtujOL3TUAAIA/AACAP4DFR71cqRe8STjGu8opqzzDAnY9riSNvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVTRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjexKy8j8cUCUhpRSlIwBbJRL9owBdJRHQJNaY1baAWl1fZQoaAZoCWgPQwgcmrLTjx1vQJSGlFKUaBVL62gWR0CTWneUY8+zdX2UKGgGaAloD0MIthMlIVHNcECUhpRSlGgVS/9oFkdAk1tDRIBikXV9lChoBmgJaA9DCPfnoiHjH3BAlIaUUpRoFU0HAWgWR0CTW5VLSNOudX2UKGgGaAloD0MIWvENhU+xb0CUhpRSlGgVS+NoFkdAk1yF7tzCDXV9lChoBmgJaA9DCDRN2H5ytXFAlIaUUpRoFU0QAWgWR0CTXL8qWkaddX2UKGgGaAloD0MIbhgFweO5ckCUhpRSlGgVS/toFkdAk1zRP9DQaHV9lChoBmgJaA9DCN+nqtDAZXNAlIaUUpRoFU0XAWgWR0CTXzOZssQNdX2UKGgGaAloD0MIE/BrJMmfcECUhpRSlGgVTSsBaBZHQJNfiueSSvF1fZQoaAZoCWgPQwjEk93MaI5xQJSGlFKUaBVL6mgWR0CTX5+KjzqbdX2UKGgGaAloD0MIyaze4TbyckCUhpRSlGgVTW4BaBZHQJNfvXSSeRR1fZQoaAZoCWgPQwh5HtyddQFyQJSGlFKUaBVNZAFoFkdAk1/6/Zdv9HV9lChoBmgJaA9DCFtCPugZfHJAlIaUUpRoFU0SAWgWR0CTYAYyfthNdX2UKGgGaAloD0MIKjv9oC5tb0CUhpRSlGgVS/xoFkdAk2CQqRU3oHV9lChoBmgJaA9DCFFrmnecImBAlIaUUpRoFU3oA2gWR0CTYPBYFJQMdX2UKGgGaAloD0MILH++Ldgqc0CUhpRSlGgVTQkBaBZHQJNg7xMFlkJ1fZQoaAZoCWgPQwgIza57qyJvQJSGlFKUaBVL/mgWR0CTYY1q33HrdX2UKGgGaAloD0MIcJf9ulPWckCUhpRSlGgVS+doFkdAk2IDcEeQuHV9lChoBmgJaA9DCOsdboeGgnFAlIaUUpRoFU0ZAWgWR0CTYkEdvKlpdX2UKGgGaAloD0MI521sduQhcECUhpRSlGgVS+JoFkdAk2KsinpB5XV9lChoBmgJaA9DCF8IOe9/sG5AlIaUUpRoFU0OAWgWR0CTYrFKTSssdX2UKGgGaAloD0MIa7kzE0x/cECUhpRSlGgVS+FoFkdAk2LTVDrquHV9lChoBmgJaA9DCJgUH5+QPVVAlIaUUpRoFUuaaBZHQJNjanbZezF1fZQoaAZoCWgPQwh8t3njJPptQJSGlFKUaBVL5GgWR0CTZOyiVSn+dX2UKGgGaAloD0MIuFz92KSxb0CUhpRSlGgVTQwBaBZHQJNlxIg/1QJ1fZQoaAZoCWgPQwj1udqKfYBvQJSGlFKUaBVL4WgWR0CTZk9ZzPrwdX2UKGgGaAloD0MIaauSyH5acECUhpRSlGgVTXYBaBZHQJNmge2d/ax1fZQoaAZoCWgPQwhFnbmHxK5wQJSGlFKUaBVNIQFoFkdAk2agOnVG1HV9lChoBmgJaA9DCN19jo/WiXNAlIaUUpRoFU0FAWgWR0CTZt+RoysTdX2UKGgGaAloD0MIX+/+eO+BcECUhpRSlGgVTTUBaBZHQJNnRQl8gIR1fZQoaAZoCWgPQwiTG0XWmihvQJSGlFKUaBVL+WgWR0CTZ8FOO802dX2UKGgGaAloD0MI2lcepKcRckCUhpRSlGgVTT4BaBZHQJNnyo2n8891fZQoaAZoCWgPQwhck25LZIJvQJSGlFKUaBVNFQFoFkdAk2lETxoZh3V9lChoBmgJaA9DCAUWwJRBa3BAlIaUUpRoFU0OAWgWR0CTadM6ij+KdX2UKGgGaAloD0MIgQUwZSAXcUCUhpRSlGgVTTgBaBZHQJNqABPsRg91fZQoaAZoCWgPQwjJdr6f2uhwQJSGlFKUaBVL9WgWR0CTagclw97odX2UKGgGaAloD0MI+P9xwoTVb0CUhpRSlGgVTR4BaBZHQJNqE7yQPqd1fZQoaAZoCWgPQwgP1CmPboRyQJSGlFKUaBVNIgFoFkdAk2omi1y/9HV9lChoBmgJaA9DCARUOIJU61JAlIaUUpRoFUupaBZHQJNqst+TeO51fZQoaAZoCWgPQwhvhEVFnOJuQJSGlFKUaBVNlAFoFkdAk2rqHGjsU3V9lChoBmgJaA9DCGluhbAa5G9AlIaUUpRoFU0VAWgWR0CTfhi3XqZ/dX2UKGgGaAloD0MIMucZ+1JvcECUhpRSlGgVTQABaBZHQJN+VTXJ5mh1fZQoaAZoCWgPQwiRtBt9TPBxQJSGlFKUaBVNBAFoFkdAk38QDq4YrXV9lChoBmgJaA9DCPziUpU2eHJAlIaUUpRoFUv4aBZHQJN/H1mJ3xF1fZQoaAZoCWgPQwg2ct2UcvpxQJSGlFKUaBVL42gWR0CTf2slb/wRdX2UKGgGaAloD0MIjGZl+9CfcUCUhpRSlGgVS/loFkdAk3+JCBwuNHV9lChoBmgJaA9DCFOWIY712nBAlIaUUpRoFU0jAWgWR0CTf+e0Xxe+dX2UKGgGaAloD0MIhV5/Ep96cECUhpRSlGgVTQsBaBZHQJOAV8b70nR1fZQoaAZoCWgPQwhI3jmUIeBuQJSGlFKUaBVL32gWR0CTgJ+TeO4odX2UKGgGaAloD0MIryZPWY2OcUCUhpRSlGgVS9hoFkdAk4Dj5O8CgnV9lChoBmgJaA9DCN481SG3RXFAlIaUUpRoFUviaBZHQJOBSgElme11fZQoaAZoCWgPQwj+tFGdjjpyQJSGlFKUaBVL8mgWR0CTgceKbaysdX2UKGgGaAloD0MIWkV/aOYVcUCUhpRSlGgVS/toFkdAk4HbUPQOWnV9lChoBmgJaA9DCIJzRpS2g3BAlIaUUpRoFUvtaBZHQJOCSN6w+t91fZQoaAZoCWgPQwjcSq/NxkxwQJSGlFKUaBVNEwFoFkdAk4J2kWRA8nV9lChoBmgJaA9DCLJGPURjqXFAlIaUUpRoFUvaaBZHQJODLcVQAMl1fZQoaAZoCWgPQwiSyhRzkMNvQJSGlFKUaBVNHAFoFkdAk4OOA3DNyHV9lChoBmgJaA9DCMOBkCxgNHJAlIaUUpRoFUvpaBZHQJOEghs67ul1fZQoaAZoCWgPQwik3lM5beByQJSGlFKUaBVL5GgWR0CThURZU1htdX2UKGgGaAloD0MIW1t4XioKcUCUhpRSlGgVTQgBaBZHQJOFSu0TlDF1fZQoaAZoCWgPQwigGcQHNnJyQJSGlFKUaBVL/WgWR0CThYJbMX7+dX2UKGgGaAloD0MIIR6Jl2fHcECUhpRSlGgVTRcBaBZHQJOGDzqbBoF1fZQoaAZoCWgPQwjrbp7qEDtzQJSGlFKUaBVL7WgWR0CThlVafSQYdX2UKGgGaAloD0MIhcyVQfV5ckCUhpRSlGgVTQEBaBZHQJOGgfKZDzB1fZQoaAZoCWgPQwjQ1VbsL8RuQJSGlFKUaBVL9mgWR0CThullbu+idX2UKGgGaAloD0MIsYf2sUJFcUCUhpRSlGgVS+JoFkdAk4gFJg9eQnV9lChoBmgJaA9DCH/1uG81iXNAlIaUUpRoFUv6aBZHQJOIE7HQyAR1fZQoaAZoCWgPQwiwAKYMnFpwQJSGlFKUaBVNEgFoFkdAk4gr4FiazHV9lChoBmgJaA9DCIgQV84eEHFAlIaUUpRoFUv8aBZHQJOIO0rsjVx1fZQoaAZoCWgPQwjeIForWiJwQJSGlFKUaBVL1WgWR0CTiLS1E3KkdX2UKGgGaAloD0MIe9tMhTi3cECUhpRSlGgVTacBaBZHQJOItPRArx11fZQoaAZoCWgPQwh96IL6ViFwQJSGlFKUaBVNBAFoFkdAk4j/ci4axXV9lChoBmgJaA9DCFmLTwFwDXFAlIaUUpRoFUvuaBZHQJOJhb9qDbt1fZQoaAZoCWgPQwgjS+ZY3ixwQJSGlFKUaBVL52gWR0CTis9qUNaydX2UKGgGaAloD0MI86s5QHDlckCUhpRSlGgVS+loFkdAk4rhKpT/AHV9lChoBmgJaA9DCBNGs7J9eXFAlIaUUpRoFUvqaBZHQJOLGdAgPmR1fZQoaAZoCWgPQwiTG0XWmoFtQJSGlFKUaBVL7WgWR0CTi/eXRgJDdX2UKGgGaAloD0MIuwm+aTpPcUCUhpRSlGgVTT8BaBZHQJOMVi4J/od1fZQoaAZoCWgPQwjwEwfQr4hwQJSGlFKUaBVNAAFoFkdAk40OSB9TgnV9lChoBmgJaA9DCOHx7V0D0XBAlIaUUpRoFU0jAWgWR0CTjSLhaTwEdX2UKGgGaAloD0MICACOPfv/cECUhpRSlGgVS+poFkdAk42I3zcynHV9lChoBmgJaA9DCF6c+GpHl3FAlIaUUpRoFUv1aBZHQJON7DO1OTJ1fZQoaAZoCWgPQwichqjCHxNwQJSGlFKUaBVL4GgWR0CTjeuVHFxXdX2UKGgGaAloD0MIEkpfCHmacECUhpRSlGgVS/hoFkdAk46DwH7gsXV9lChoBmgJaA9DCL3CgvsBgnFAlIaUUpRoFU0ZAWgWR0CTjqRbKRuCdX2UKGgGaAloD0MIWHGqtbD1b0CUhpRSlGgVS95oFkdAk47fZM+NcXV9lChoBmgJaA9DCNDRqpa0HXBAlIaUUpRoFU0eAWgWR0CTjtz/IbOvdX2UKGgGaAloD0MI6kFBKRr7ckCUhpRSlGgVTVwBaBZHQJOO6ay8jA11fZQoaAZoCWgPQwhS0Vj7O8pwQJSGlFKUaBVNQAFoFkdAk5Ba9TP0I3V9lChoBmgJaA9DCDv9oC6ScHJAlIaUUpRoFUvqaBZHQJOQd3aBZp11fZQoaAZoCWgPQwiPU3QkF4lxQJSGlFKUaBVNHQFoFkdAk5GlbqyGBXV9lChoBmgJaA9DCGLAkqtYJnJAlIaUUpRoFU0wAWgWR0CTknoA4n4PdX2UKGgGaAloD0MIrdwLzAopU0CUhpRSlGgVS8ZoFkdAk5Kh6Ww/xHV9lChoBmgJaA9DCAaCABk6k3FAlIaUUpRoFUvjaBZHQJOTBKPGQ0Z1fZQoaAZoCWgPQwiUZ14Ou3FxQJSGlFKUaBVNHgFoFkdAk5NU384xUXV9lChoBmgJaA9DCNOGw9LAIW5AlIaUUpRoFU0SAWgWR0CTk7fZmI0qdX2UKGgGaAloD0MIxVimXyK6b0CUhpRSlGgVS/loFkdAk5P+jEehf3V9lChoBmgJaA9DCNwNorWizm9AlIaUUpRoFUvwaBZHQJOU21Vo6CF1fZQoaAZoCWgPQwgJh97iYWpyQJSGlFKUaBVL/mgWR0CTlOf5k9U0dX2UKGgGaAloD0MIMpHSbJ5ocUCUhpRSlGgVTRkBaBZHQJOV5z4k/r11ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:141159b7a6951f8e043e47a810093cf792437d5d8efb54a59f349c19bcf813b3
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8091209348988e444274380c469582d19e6284cf1099a1918dff04aae3f1e0b
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (193 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 276.1156319386575, "std_reward": 12.905005713087336, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-31T14:52:23.133567"}
|