SciBERT_25K_steps_bs64

This model is a fine-tuned version of allenai/scibert_scivocab_uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0177
  • Accuracy: 0.9941
  • Precision: 0.7990
  • Recall: 0.5288
  • F1: 0.6364
  • Hamming: 0.0059

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 25000

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Hamming
0.0467 0.16 5000 0.0416 0.9902 0.0 0.0 0.0 0.0098
0.0236 0.32 10000 0.0223 0.9932 0.8192 0.3929 0.5311 0.0068
0.0198 0.47 15000 0.0190 0.9939 0.8015 0.4934 0.6108 0.0061
0.0185 0.63 20000 0.0180 0.9940 0.7974 0.5220 0.6310 0.0060
0.0181 0.79 25000 0.0177 0.9941 0.7990 0.5288 0.6364 0.0059

Framework versions

  • Transformers 4.35.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.7.1
  • Tokenizers 0.14.1
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for bdpc/SciBERT_25K_steps_bs64

Finetuned
(61)
this model