End of training
Browse files
README.md
CHANGED
@@ -15,14 +15,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
-
- Loss: 1.
|
19 |
-
- Answer: {'precision': 0.
|
20 |
-
- Header: {'precision': 0.
|
21 |
-
- Question: {'precision': 0.
|
22 |
-
- Overall Precision: 0.
|
23 |
-
- Overall Recall: 0.
|
24 |
-
- Overall F1: 0.
|
25 |
-
- Overall Accuracy: 0.
|
26 |
|
27 |
## Model description
|
28 |
|
@@ -52,20 +52,20 @@ The following hyperparameters were used during training:
|
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
-
| Training Loss | Epoch | Step | Validation Loss | Answer | Header
|
56 |
-
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.0002 | 126.3158 | 2400 | 1.
|
69 |
|
70 |
|
71 |
### Framework versions
|
|
|
15 |
|
16 |
This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 1.6209
|
19 |
+
- Answer: {'precision': 0.8577827547592385, 'recall': 0.9375764993880049, 'f1': 0.895906432748538, 'number': 817}
|
20 |
+
- Header: {'precision': 0.6464646464646465, 'recall': 0.5378151260504201, 'f1': 0.5871559633027523, 'number': 119}
|
21 |
+
- Question: {'precision': 0.9123951537744641, 'recall': 0.9090064995357474, 'f1': 0.9106976744186047, 'number': 1077}
|
22 |
+
- Overall Precision: 0.8760
|
23 |
+
- Overall Recall: 0.8987
|
24 |
+
- Overall F1: 0.8872
|
25 |
+
- Overall Accuracy: 0.8046
|
26 |
|
27 |
## Model description
|
28 |
|
|
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
56 |
+
|:-------------:|:--------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
57 |
+
| 0.4014 | 10.5263 | 200 | 0.9835 | {'precision': 0.835920177383592, 'recall': 0.9228886168910648, 'f1': 0.8772542175683536, 'number': 817} | {'precision': 0.6018518518518519, 'recall': 0.5462184873949579, 'f1': 0.5726872246696034, 'number': 119} | {'precision': 0.8773168578993822, 'recall': 0.9229340761374187, 'f1': 0.8995475113122172, 'number': 1077} | 0.8460 | 0.9006 | 0.8725 | 0.7938 |
|
58 |
+
| 0.0415 | 21.0526 | 400 | 1.3303 | {'precision': 0.8456299659477866, 'recall': 0.9118727050183598, 'f1': 0.877502944640754, 'number': 817} | {'precision': 0.5476190476190477, 'recall': 0.5798319327731093, 'f1': 0.5632653061224491, 'number': 119} | {'precision': 0.8757875787578758, 'recall': 0.903435468895079, 'f1': 0.8893967093235832, 'number': 1077} | 0.8437 | 0.8877 | 0.8652 | 0.7961 |
|
59 |
+
| 0.0116 | 31.5789 | 600 | 1.4921 | {'precision': 0.8661137440758294, 'recall': 0.8947368421052632, 'f1': 0.8801926550270921, 'number': 817} | {'precision': 0.5416666666666666, 'recall': 0.5462184873949579, 'f1': 0.5439330543933054, 'number': 119} | {'precision': 0.8771300448430494, 'recall': 0.9080779944289693, 'f1': 0.8923357664233577, 'number': 1077} | 0.8533 | 0.8813 | 0.8671 | 0.7981 |
|
60 |
+
| 0.0065 | 42.1053 | 800 | 1.3978 | {'precision': 0.8383167220376523, 'recall': 0.9265605875152999, 'f1': 0.8802325581395348, 'number': 817} | {'precision': 0.6, 'recall': 0.5294117647058824, 'f1': 0.5625, 'number': 119} | {'precision': 0.9031954887218046, 'recall': 0.8922934076137419, 'f1': 0.897711349836525, 'number': 1077} | 0.8596 | 0.8847 | 0.8720 | 0.8121 |
|
61 |
+
| 0.0046 | 52.6316 | 1000 | 1.4918 | {'precision': 0.8400447427293065, 'recall': 0.9192166462668299, 'f1': 0.8778492109877265, 'number': 817} | {'precision': 0.59375, 'recall': 0.4789915966386555, 'f1': 0.5302325581395348, 'number': 119} | {'precision': 0.9015009380863039, 'recall': 0.8922934076137419, 'f1': 0.8968735417638825, 'number': 1077} | 0.8604 | 0.8788 | 0.8695 | 0.8016 |
|
62 |
+
| 0.0028 | 63.1579 | 1200 | 1.5552 | {'precision': 0.8537142857142858, 'recall': 0.9143206854345165, 'f1': 0.8829787234042553, 'number': 817} | {'precision': 0.632183908045977, 'recall': 0.46218487394957986, 'f1': 0.5339805825242718, 'number': 119} | {'precision': 0.8951686417502279, 'recall': 0.9117920148560817, 'f1': 0.9034038638454462, 'number': 1077} | 0.8664 | 0.8862 | 0.8762 | 0.8015 |
|
63 |
+
| 0.0011 | 73.6842 | 1400 | 1.6209 | {'precision': 0.8577827547592385, 'recall': 0.9375764993880049, 'f1': 0.895906432748538, 'number': 817} | {'precision': 0.6464646464646465, 'recall': 0.5378151260504201, 'f1': 0.5871559633027523, 'number': 119} | {'precision': 0.9123951537744641, 'recall': 0.9090064995357474, 'f1': 0.9106976744186047, 'number': 1077} | 0.8760 | 0.8987 | 0.8872 | 0.8046 |
|
64 |
+
| 0.001 | 84.2105 | 1600 | 1.5894 | {'precision': 0.8468368479467259, 'recall': 0.9339045287637698, 'f1': 0.8882421420256112, 'number': 817} | {'precision': 0.6559139784946236, 'recall': 0.5126050420168067, 'f1': 0.5754716981132076, 'number': 119} | {'precision': 0.9112149532710281, 'recall': 0.9052924791086351, 'f1': 0.9082440614811365, 'number': 1077} | 0.8716 | 0.8937 | 0.8825 | 0.8068 |
|
65 |
+
| 0.0006 | 94.7368 | 1800 | 1.6071 | {'precision': 0.8571428571428571, 'recall': 0.9033047735618115, 'f1': 0.8796185935637664, 'number': 817} | {'precision': 0.6530612244897959, 'recall': 0.5378151260504201, 'f1': 0.5898617511520737, 'number': 119} | {'precision': 0.8816621499548328, 'recall': 0.9062209842154132, 'f1': 0.8937728937728938, 'number': 1077} | 0.8606 | 0.8833 | 0.8718 | 0.8016 |
|
66 |
+
| 0.0006 | 105.2632 | 2000 | 1.6146 | {'precision': 0.8605990783410138, 'recall': 0.9143206854345165, 'f1': 0.886646884272997, 'number': 817} | {'precision': 0.5945945945945946, 'recall': 0.5546218487394958, 'f1': 0.5739130434782609, 'number': 119} | {'precision': 0.899260628465804, 'recall': 0.903435468895079, 'f1': 0.9013432144511349, 'number': 1077} | 0.8666 | 0.8872 | 0.8768 | 0.8005 |
|
67 |
+
| 0.0002 | 115.7895 | 2200 | 1.6401 | {'precision': 0.8394241417497231, 'recall': 0.9277845777233782, 'f1': 0.8813953488372093, 'number': 817} | {'precision': 0.6237623762376238, 'recall': 0.5294117647058824, 'f1': 0.5727272727272728, 'number': 119} | {'precision': 0.8986988847583643, 'recall': 0.8978644382544104, 'f1': 0.8982814677194613, 'number': 1077} | 0.8596 | 0.8882 | 0.8737 | 0.8016 |
|
68 |
+
| 0.0002 | 126.3158 | 2400 | 1.6308 | {'precision': 0.8416945373467113, 'recall': 0.9241126070991432, 'f1': 0.8809801633605602, 'number': 817} | {'precision': 0.6274509803921569, 'recall': 0.5378151260504201, 'f1': 0.579185520361991, 'number': 119} | {'precision': 0.8970588235294118, 'recall': 0.9062209842154132, 'f1': 0.9016166281755196, 'number': 1077} | 0.8601 | 0.8917 | 0.8756 | 0.7994 |
|
69 |
|
70 |
|
71 |
### Framework versions
|
logs/events.out.tfevents.1715762042.da8236381df3.3467.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95c22fb3055bec2f98a30125955260e5646fd1155b79bd828fbd95fab318a196
|
3 |
+
size 14000
|
logs/events.out.tfevents.1715763458.da8236381df3.3467.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d390247879204c471b3ac2093024956b37b0755f79671af04ef0934f5d6a8a35
|
3 |
+
size 592
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 520727564
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c87d7aed98dbe74638b59dd60f7cb8ba2410e08d5fe61f2b353a62f7cf2008c6
|
3 |
size 520727564
|